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ARTICLE

Multiple mantle metasomatism beneath the Leizhou Peninsula, South China:
evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the late
Cenozoic volcanic rocks
Pu Suna,b,c, Yaoling Niua,b,c,d,e, Pengyuan Guoa,b,c, Shuo Chena,b,c, Meng Duana,b,c, Hongmei Gonga,b,c,
Xiaohong Wanga,b,c and Yuanyuan Xiaoa,b,c

aInstitute of Oceanology, Chinese Academy of Sciences, Qingdao, China; bLaboratory for Marine Geology, Qingdao National Laboratory for
Marine Science and Technology, Qingdao, China; cCenter for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China;
dDepartment of Earth Sciences, Durham University, Durham, UK; eSchool of Earth Science and Resources, China University of Geosciences,
Beijing, China

ABSTRACT
We analysed whole-rock major and trace elements and Sr-Nd-Pb-Hf isotopes of the late Cenozoic
volcanic rocks in the Leizhou Peninsula, South China to investigate their mantle source character-
istics. These volcanic rocks, collected from Jiujiang, Tianyang and Huoju areas of the Leizhou
Peninsula, are characterized by incompatible element enrichment but variable isotopic depletion.
The volcanic rocks from Jiujiang and Tianyang show prominent primitive-mantle-normalized posi-
tive Nb, Ta and Sr anomalies and depleted Sr-Nd-Pb-Hf isotope compositions, whereas those from
Huoju show slight positive to negative Nb and Ta anomalies, a prominent positive Pb anomaly, and
more enriched Sr-Nd-Pb-Hf isotope compositions. Two types of mantle metasomatism are required
to explain the geochemical characteristics of these rocks. The Jiujiang and Tianyang samples were
largely derived from a mantle source metasomatized recently by a low-F melt. Such low-F melt is
generated within the asthenospheric mantle, which is enriched in volatiles and incompatible
elements with positive Sr anomaly and depleted Sr-Nd-Pb-Hf isotope compositions. The Huoju
samples were largely derived from a mantle source metasomatized by recycled upper continental
crust material. These two types of mantle metasomatism beneath the Leizhou Peninsula are
consistent with trace element characteristics of mantle mineralogy (e.g. clinopyroxene vs. amphi-
bole), which reflects source evolution in space and time (e.g. tectonic setting change).
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1. Introduction

Studies of oceanic basalts have revealed mantle chemi-
cal heterogeneity on all scales. Although the origin of
mantle heterogeneity is controversial, seafloor subduc-
tion has long been inferred to be significant in causing
the heterogeneity (e.g. Hofmann and White 1982;
Zindler and Hart 1986; Hart 1988; Farley 1995; Stracke
et al. 2003; Willbold and Stracke 2006). Seafloor sub-
duction can carry terrigenous and pelagic sedimentary
materials into the upper mantle, which has been
inferred to be significant in forming geochemically
enriched mantle sources (e.g. Weaver 1991; Chauvel
et al. 1992; Farley 1995; Jackson et al. 2007). On the
other hand, a low degree (low-F) melt derived within
the seismic low velocity zone (LVZ) beneath oceanic
lithosphere, which is highly enriched in volatiles, alkalis
and incompatible elements, has been suggested to

metasomatize the mantle source of intraplate volcanic
rocks (Hanson 1977; Wood 1979; Halliday et al. 1995;
Niu et al. 1999, 2002, 2012; Niu and O’Hara 2003; Niu
2005, 2008, 2014; Pilet et al. 2008). The presence of LVZ
has also been observed beneath continental litho-
sphere of eastern Asia, eastern Australia and western
America through seismic tomography (Ekström and
Dziewonski 1998), which has been thought to be sig-
nificant in forming geochemically enriched continental
intraplate basalts (e.g. Niu 2005, 2014; Guo et al. 2016;
Sun et al. 2017).

Late Cenozoic intraplate volcanic rocks are wide-
spread in Southeast Asia (Figure 1(a)), including those
in the South China Sea Basin (SCSB, Yan et al. 2006,
2015), in the Indochina Peninsula (Hoang and Flower
1998), and in the Hainan Island and Leizhou Peninsula
(Tu et al. 1991, 1992; Flower et al. 1992; Zhang et al.
1996; Ho et al. 2000; Xu et al. 2002; Zou and Fan 2010;
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Wang et al. 2011, 2013; Liu et al. 2015). They are char-
acterized by OIB (oceanic island basalts)-like incompa-
tible element enrichment but varying extent of Sr-Nd
isotope depletion with a Dupal-type Pb isotope signa-
ture (Tu et al. 1991, 1992; Flower et al. 1992; Hoang and
Flower 1998; Chen et al. 2009; Zeng et al. 2013). Over
the last decade, a mantle plume has been popularly
invoked to explain the petrogenesis of these volcanic
rocks, largely inferred from a mantle seismic tomogra-
phy beneath the region (Lebedev and Nolet 2003; Zhao
2004; Yan and Shi 2007; Lei et al. 2009; Wang et al.
2011) although this interpretation remains debatable.

In this paper, we do not intend to discuss the plume
debate, but focus on the mantle source heterogeneity
of mantle metasomatic origin using bulk-rock major
and trace elements and Sr-Nd-Pb-Hf isotopes of the
late Cenozoic volcanic rocks from the Leizhou
Peninsula. These rocks have been relatively poorly stu-
died compared with other Cenozoic volcanic rocks in
the Southeast Asia (Ho et al. 2000), which may provide
new perspectives on the mantle source characteristics
and mantle evolution histories beneath this area. We
have identified two types of mantle metasomatism
beneath this region: metasomatism genetically derived
from melting of subducted terrigenous sediments
(upper continental crust [UCC] material), and the meta-
somatism by an incompatible element enriched low-F
melt derived from the asthenosphere.

2. Geological setting and samples

The Leizhou Peninsula is located at the geological
transition between South China continental margin

and the SCSB (Figure 1(a)). Southeast Asia is geologi-
cally considered as an assembly of exotic continental
terranes fragmented from Gondwana with the amalga-
mation largely completed during the early Mesozoic
(Lin et al. 1985; Metcalfe 1990; Tu et al. 1991; Chung
et al. 1994; Zou et al. 2000). South China in the
Mesozoic was characterized by having an active con-
tinental margin with extensive subduction-related
granitoid magmatism (Jahn et al. 1990; Zhou and Li
2000; Li et al. 2012; Niu et al. 2015). The subduction
was predicted to cease at ~100 Ma because of trench
jam by an exotic micro-continent (Niu et al. 2015). The
South China Sea is thought to open at ~32 Ma and
spread until ~15.5 Ma (Taylor and Hayes 1983; Briais
et al. 1993; Kido et al. 2001). The intraplate magmatism
on the periphery of the SCSB contemporaneous with
the SCSB spreading was limited, but extensively
resumed after the cessation of the SCSB spreading
(Yan et al. 2006; Huang et al. 2013).

The Ar-Ar and K-Ar dating gives erupting ages of 6.12
to 0.17 Ma for the volcanic rocks in the Leizhou Peninsula
(Ho et al. 2000). Our samples were collected from Huoju,
Jiujiang and Tianyang areas (Figure 1(b)). These volcanic
lavas show layered structures (Figure 2(a)), caused by
multiple episodes of eruptions (Ho et al. 2000). Porous
and ropy structures can be observed at the surface of
each lava layer (Figure 2(b)). These rocks show intergra-
nular texture, with phenocrysts and microlites of olivine,
clinopyroxene and magnetite aggregated between
euhedral plagioclase laths (~0.5–1 mm; Figure 2(c,d)).
Spinel peridotite mantle xenoliths and clinopyroxene
megacrysts are present in volcanic rocks from Jiujiang
and Tianyang (Yu et al. 2006; Huang et al. 2007).

120  E116  E112  E108  E

2424  N

20  N2

1616  N

12  N

8  N

Hainan
Island

Leizhou
Peninsula

China

Vietnam
Indo-China
Peninsula

Taiwan

Hongkong

Guangzhou

Ho Chi Minh

Hanoi

Luzon

S
O

U
T

H

C
H

I
N

A

S
E

A

Pala
wan

Mindoro

Nansha 
Islands

Xisha
Islands zhongsha

Islands

Dongsha
Islands

Border

City

Cenozoic 
basalts
Oceanic
crust

(a)

Fig. b

110   00' E109  30' E 110   30' E

  21   20' N

  20   40' N

(b)

Leizhou
Peninsula

Huoju

Jiujiang

Tianyang

0 200 400 km

R
ed R

iver 

Pearl River 

revi
R

gnoke
M

Sample
site

Xuwen Haian

Quiie

Yingli

Lingbei

Hainan Island

Haikou

Penglai

Qionghai

Shishan
Duowen

0 10 20 30 km

  20   00' N

 19   20' N

Figure 1. (a) Distribution of the Cenozoic intraplate volcanism in Southeast Asia (after Wang et al. (2011)). (b) Distribution of the
Cenozoic intraplate volcanism in the Leizhou Peninsula and Hainan Island and sampling locations of the late Cenozoic volcanic rocks
in the Leizhou Peninsula.
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3. Sample preparation and analytical
procedures

We crushed fresh rocks to chips of ≤5 mm before
repeatedly cleaned in Milli-Q water in an ultrasonic
bath, dried and grounded into ≥200 μm powders with
an agate mill in a clean environment. Bulk-rock major
elements were analysed at China University of
Geosciences, Beijing (CUGB), using a Leeman Prodigy
Inductively Coupled Plasma Optical Emission
Spectrometer (ICP-OES). Repeated analyses of USGS
reference rock standards RCR-1, AGV-2 and national
geological standard reference materials GSR-3 give ana-
lytical precision better than 1% for most elements
except for TiO2 (~1.5%) and P2O5 (~2.0%). The analytical
details are given in Song et al. (2010). See
Supplementary Table 1 for major element analytical
results for USGS standard AGV-2.

Bulk-rock trace elements were analysed in the
Institute of Oceanology, Chinese Academy of Sciences
(IOCAS), using Agilent-7900 inductively coupled plasma
mass spectrometer (ICP-MS). Fifty milligrams of each
sample were dissolved with acid mix of distilled
HCl + 3HNO3 and HF in a high-pressure jacket equipped
Teflon beaker for 15 h, and then re-dissolved with 20%
HNO3 for 2 h till complete digestion. Repeated analyses
of USGS reference rock standards AGV-2, W-2, BHVO-2,

BCR-2 give analytical precisions better than 5% for most
elements. See Chen et al. (2017) for analytical details.
See Supplementary Table 1 for trace element analytical
results for USGS standard AGV-2.

Bulk-rock Sr-Nd-Pb-Hf isotope ratios were measured
using a Nu Plasma MC-ICP-MS in the IOCAS. About
50 mg of rock powder was dissolved with double distilled
HNO3 + HCl + HF in a high-pressure jacket equipped
Teflon beaker at 190°C for 15 h, which was then dried
and re-dissolved with 2 ml 3N HNO3 for 2 h. The final
sample solution was first loaded onto Sr-spec resin col-
umns to separate Sr and Pb, with the eluted sample
solution collected and then loaded onto AG 50W-X8
resin columns to separate REE. The eluted sample solution
from AG 50W-X8 resin columns was collected and then
loaded onto Ln-spec resin columns to collect Hf. The
separated REE solution was dried and re-dissolved with
0.25 N HCl before being loaded onto Ln-spec resin col-
umns to collect Nd. The above streamlined procedure was
modified after Pin et al. (2014) and Yang et al. (2010). The
measured 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf isotope
ratios were normalized for instrumental mass fraction
using the exponential law to 86Sr/88Sr = 0.1194,
146Nd/144Nd = 0.7219 and 179Hf/177Hf = 0.7325, respec-
tively. International standards of NBS-987, JNdi-1 and Alfa
Hf were used as bracketing standards every five samples
to monitor the instrument drift during the analysis of Sr,

a b
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Figure 2. (a) Layered structures of the volcanic lavas in the Leizhou Peninsula. (b) Porous and ropy structures at the surface of lava
layers. (c, d) Photomicrographs showing intergranular textures, with phenocrysts and microlites of olivine, clinopyroxene and
magnetite aggregated between euhedral plagioclase laths.
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Nd and Hf isotopes, respectively. Repeated analysis for
NBS-987 gives an average 87Sr/86Sr = 0.710245 ± 0.000012
(n = 11, 2σ). Repeated analysis for JNdi-1 gives an average
143Nd/144Nd = 0.512094 ± 0.000008 (n = 13, 2σ), and
repeated analysis for Alfa Hf gives an average
176Hf/177Hf = 0.282194 ± 0.000007 (n = 7, 2σ). Pb isotope
ratios were normalized for instrumental mass fraction
relative to NBS/SRM 997 203Tl/205Tl = 0.41891. The inter-
national standard NBS-981 was used to monitor the
instrument drift during the analysis of Pb isotopes.
Repeated analysis of NBS-981 gives average
206Pb/204Pb = 16.932 ± 0.001 (n = 10, 2σ),
207Pb/204Pb = 15.489 ± 0.003 (n = 10, 2σ), and
208Pb/204Pb = 36.684 ± 0.013 (n = 10, 2σ). See
Supplementary Table 2 for the Sr-Nd-Pb-Hf isotopic
results of USGS standards of BCR-2 and AGV-2.

4. Geochemistry

4.1 Major element compositions

The analytical data are given in Supplementary Table 1.
For comparison, we also compiled major elements, trace
elements and Sr-Nd-Pb isotope data of the Cenozoic
basaltic rocks in the Hainan Island (Supplementary Table
3; Tu et al. 1991; Flower et al. 1992; Ho et al. 2000; Zou and
Fan 2010; Wang et al. 2011). The volcanic rocks from the
Leizhou Peninsula are mainly tholeiitic and show basaltic-
andesitic SiO2 contents of 47.78–61.21 wt.% with Mg# of
53–65 (Figure 3(a)). The samples from Huoju have highly
evolved SiO2 contents of 54.87–61.21 wt.%. The volcanic
rocks from the Leizhou Peninsula have comparable Na2
O and K2O contents with the basaltic rocks from the
Hainan Island (Figure 3(b,c)). Samples from Jiujiang and
Tianyang show apparent higher Al2O3 than those from
Huoju and Hainan Island (Figure 3(d)).

4.2 Trace element compositions

Trace element data are given in Supplementary Table 1.
These volcanic rocks show varying extents of light rare
earth element (LREE) enrichment, with OIB-like [La/Yb]N
(chondrite normalized) of 6.0–12.9. They show REE abun-
dances relatively less enriched than OIB, with slight positive
Eu anomaly. One sample from Tianyang (ZC11-02) with
negative Ce (Figure 4(a)), Zr and Hf anomalies (Figure 4(b))
and very high Ba/Zr (1.97) and Lu/Hf (0.11) ratios is best
explained to reflect significant zircon crystallizationbecause
Ce4+ substitute Zr and Hf in zircon (Trail et al. 2012).

In the primitive-mantle-normalized multi-element
spider diagram (Figure 4(b)), these volcanic rocks are
enriched in incompatible elements, and tend to be
more enriched in more incompatible elements, except

for Nb, Ta, Pb and Sr, which are anomalous. The Huoju
samples show varying Nb and Ta anomalies (from slight
positive to negative), moderate positive Sr anomaly and
prominent positive Pb anomaly. The samples from
Jiujiang and Tianyang have positive Nb and Ta anoma-
lies, weak to moderate positive Pb anomaly and signifi-
cant positive Sr anomaly. The differences in Nb, Ta, Sr
and Eu anomalies of these volcanic rocks are more
apparent in Figure 5, with the ratios of [Nb/Th]N and
[Ta/U]N falling between those of OIB and UCC, and Sr/
Sr* and Eu/Eu* higher than average OIB and most rocks
from the Hainan Island. Furthermore, the samples from
Huoju have lower [Nb/Th]N, [Ta/U]N, Sr/Sr* and Eu/Eu*
compared with those from Jiujiang and Tianyang.

4.3. Sr-Nd-Pb-Hf isotopes

The Sr, Nd, Pb and Hf isotope data are given in
Supplementary Table 2 and shown in Figure 6. In gen-
eral, these rocks have more variable Sr-Nd-Pb isotopic
compositions than rocks from the Hainan Island, and
plot in the field of the Cenozoic basalts from SCSB
(Figure 6(a,c,d)). They have generally depleted
87Sr/86Sr (0.702955–0.704888), 143Nd/144Nd (0.512754–-
0.512998) and 176Hf/177Hf (0.282939–0.283124), with
ƐNd of +2.3 to +7.0 and ƐHf of +5.5 to +12.0, respec-
tively. However, they have radiogenic 207Pb/204Pb
(15.530–15.666) and 208Pb/204Pb (38.425–39.077) with
intermediate 206Pb/204Pb (18.454–18.727).

These rocks in Sr-Nd isotopic space define a negative
trend (Figure 6(a)), which extends from the field of the
depleted mid-ocean ridge basalts (MORB) to the more
enriched OIB field. The positive Nd-Hf isotopic correla-
tion is subparallel to the terrestrial array (Vervoort et al.
1999; Figure 6(b)). A high-angle trend away from the
Northern Hemisphere Reference Line (NHRL; Hart 1984)
in the 207Pb/204Pb vs. 206Pb/204Pb diagram is significant
(Figure 6(c)). In the 208Pb/204Pb vs. 206Pb/204Pb diagram,
they plot above and subparallel to the NHRL (Figure 6
(d)), showing a Dupal signature (Hart 1984). Besides,
there are a positive correlation between 206Pb/204Pb
and 87Sr/86Sr and a negative correlation between
206Pb/204Pb and 143Nd/144Nd (Figure 6(e,f)).

The correlations of Sr-Nd-Pb-Hf isotope ratios of the
volcanic rocks from the Leizhou Peninsula are to a first
order consistent with two component-mixing in the man-
tle source region: an Indian-type depleted mantle com-
ponent and an isotopically enriched component.
Compared with samples from Jiujiang and Tianyang, the
Huoju samples have higher 87Sr/86Sr and 206Pb/204Pb and
lower 143Nd/144Nd and 176Hf/177Hf (Figure 6), indicating
higher contribution of the isotopically enriched compo-
nent in the mantle source region.
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5. Discussion

5.1 Effect of fractional crystallization and crustal
contamination on magma compositions

Compared with the samples from Jiujiang and Tianyang
and the rocks from the Hainan Island, the samples from
Huoju show relatively lower Mg#, CaO (Figure 3(e)), Ni
(Figure 3(g)) and Cr (Figure 3(h)), reflecting their

experiencing higher extent of fractional crystallization.
The rocks from the Leizhou Peninsula show generally
lower CaO/Al2O3 relative to the rocks from the Hainan
Island, indicating their experiencing higher extent of
crystallization of clinopyroxenes (Cpx; Figure 3(f)).
According to the correlations of Mg# with Cr and Ni,
these samples must have experienced olivine and Cpx-
dominated fractional crystallization (Figure 3(g,h)).
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Before using bulk-rock trace elements and Sr-Nd-Pb-
Hf isotopes to infer source compositional characteris-
tics, we need to evaluate the potential contribution of
crustal contamination in the bulk-rock compositions of
these volcanic rocks during their ascent to the surface.
The continental crust materials are characterized by
enriched SiO2, radiogenic Sr isotopes and unradiogenic
Nd isotopes. Therefore, involvement of the continental
crust materials in the basaltic melt can increase both
SiO2 and 87Sr/86Sr values, while decrease 143Nd/144Nd
values of the melt. Compared with the samples from
Jiujiang and Tianyang, the samples from Huoju show
generally higher SiO2 (54.87–61.21 wt.%) and 87Sr/86Sr

(0.703882–0.704888) (Figure 7). However, the higher
SiO2 and

87Sr/86Sr features of the Huoju samples should
not be caused by crustal contamination, and their iso-
topic compositions were largely inherited from the
source materials for the following reasons:

(1) simple mixing calculation shows that to gener-
ate the Huoju samples with 54.87–61.21 wt.%
SiO2, as high as ~38–70% UCC materials are
needed to assimilate with the assumed ‘pri-
mary’ basaltic melt. Even if such high extent
of crustal assimilation was possible, it would
generate melts with high 87Sr/86Sr values of

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

C
ho

nd
ri

te
 n

or
m

al
iz

ed

UCC

OIB

Huoju

Jiujiang & Tianyang

ZC11-02

1

10

100

1000

Ba Rb Th Nb U Ta K La Ce Pb Pr Sr Nd Zr Hf P Sm Ti Eu Gd Tb Dy Y Ho Er Tm Yb Lu

P
ri

m
it

iv
e 

m
an

tl
e 

no
rm

al
iz

ed

ZC11-02

(b)

(a)

Figure 4. (a) Chondrite-normalized REE patterns of the volcanic rocks from the Leizhou Peninsula. (b) Primitive mantle-normalized
multiple incompatible element abundances of these rocks. For comparison, average compositions of present-day OIB (Sun and
McDonough 1989) and upper continental crust (UCC) (Rudnick and Gao 2003) are plotted. The sample ZC11-02 with negative Ce
anomaly also has negative Zr and Hf anomalies as the result of excess zircon crystallization.

INTERNATIONAL GEOLOGY REVIEW 1773



~0.7071–0.7116 (Figure 7), much higher than
the 87Sr/86Sr values (0.703882–0.704888) of
the Huoju samples;

(2) there are no co-variations between SiO2 and
87Sr/86Sr values in the Huoju samples (Figure 7),
indicating that the SiO2 and 87Sr/86Sr variations
in the Huoju samples were controlled by differ-
ent processes, rather than one common process
of crustal contamination. The higher SiO2 con-
tents were caused by high extent of fractional
crystallization, while the higher 87Sr/86Sr values
were most likely inherited from the mantle
source compositions;

(3) the Sr-Nd-Pb isotope compositions of the volca-
nic rocks in the Leizhou Peninsula plot in the
field of Cenozoic basalts from the SCSB (Figure
6; Tu et al. 1992; Yan et al. 2008, Yan et al. 2015).
These SCSB basalts were erupted through ocea-
nic crust and experienced little continental crust
contamination. Hence, the Sr-Nd-Pb isotope
compositions of Cenozoic basalts from the SCSB
and intraplate volcanic rocks in the periphery
regions of the SCSB must reflect mantle signa-
tures, which has been confirmed by studies of
the Cenozoic volcanic rocks from Hainan Island
(Tu et al. 1991), Vietnam (Hoang et al. 1996;
Hoang and Flower 1998) and Southeast China
(Sun et al. 2017, 2018).

5.2 Explanation of the positive Sr anomaly in the
volcanic rocks from the Leizhou Peninsula

The volcanic rocks from the Leizhou Peninsula have
a significant positive Sr anomaly (Figure 4(b)). Such

positive Sr anomaly has also been observed in
Cenozoic basalts from the Hainan Island (Figure 8),
which was explained to result from the addition of
recycled oceanic gabbro in the mantle source region
(Wang et al. 2011), because plagioclase-rich oceanic
gabbro has high Sr (Sobolev et al. 2000; Yaxley and
Sobolev 2007; Stroncik and Devey 2011). Hence, the
positive Sr anomaly in the Hainan basalts was sug-
gested as evidence for the presence of recycled ocea-
nic crust entrained by an upwelling mantle plume
beneath this area (Wang et al. 2011). This explanation
is possible and likely. However, this explanation is not
suitable for the volcanic rocks in the Leizhou
Peninsula, as reflected from the distinct correlation
trends of Sr/Sr* with SiO2, [La/Sm]N, Nb/U and Zr/Hf
between rocks from the Leizhou Peninsula and Hainan
Island (Figure 8). This is because (1) partial melts from
recycled gabbroic oceanic crust are characterized by
both positive Sr anomaly and more silicic composition
(Green and Ringwood 1968; Wyllie 1970; Yaxley and
Sobolev 2007). However, the volcanic rocks from the
Leizhou Peninsula show negative correlation between
SiO2 and Sr/Sr* (Figure 8(a)); (2) recycled oceanic crust
materials are depleted in incompatible elements with
low [La/Sm]N (Niu et al. 2002, 2012; Niu and O’Hara
2003). However, the volcanic rocks from Jiujiang
and Tianyang with higher Sr/Sr* have higher
[La/Sm]N (primitive mantle normalized) of 2.5–3.3
than the average OIB (~2.4; Sun and McDonough
1989) (Figure 7(b)), reflecting an incompatible element
enriched mantle source (Niu and Batiza 1997). Besides,
these samples show Nb/U (38.2–61.3) similar to aver-
age OIB (47 ± 10; Hofmann et al. 1986) and super
chondritic Zr/Hf ratios (38.3–43.3; Dupuy et al. 1992;
Niu 2012) (Figure 8(c,d)). As the elements in each ratio
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pair have similar incompatibility during mantle melting
and magma evolution, these ratios thus largely reflect
the source ratios (Hofmann et al. 1986; Niu and Batiza
1997). All the above characteristics suggest that the
rocks from the Leizhou Peninsula with a significant
positive Sr anomaly (especially those from Jiujiang
and Tianyang) are derived from an incompatible ele-
ment enriched mantle source.

The volcanic rocks from Jiujiang and Tianyang
show generally depleted Sr-Nd-Pb-Hf isotope com-
positions (Figure 6), indicating their origin from an
isotopically depleted asthenospheric mantle. As
inferred from MORB, the asthenospheric mantle is

incompatible element depleted, which is thought
to result from continental crust extraction in the
Earth’s early history (Gast 1968; O’Nions et al. 1979;
Allègre et al. 1983). However, as inferred above, the
mantle source of the Jiujiang and Tianyang samples
is enriched, not depleted, in incompatible elements.
Therefore, there must be a process that had re-
enriched the incompatible elements in the astheno-
spheric mantle source of these volcanic rocks. Such
process must also account for the significant posi-
tive Sr anomaly observed in these samples because
of the positive correlations of Sr/Sr* with [La/Sm]N,
Nb/U and Zr/Hf (Figure 8).
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5.3 Low-F melt metasomatism in the mantle
source region

Low-degree (low-F) melt metasomatism enriched in vola-
tiles, alkalis and incompatible elements has long been
considered significant in forming geochemically enriched
mantle source (Halliday et al. 1995; Niu et al. 1996, 2002,
2012; Niu and O’Hara 2003; Workman et al. 2004; Niu
2005, 2008, 2014, Tang et al. 2006; Guo et al. 2016; Sun
et al. 2017). Such low-F melt may develop within the LVZ
and is inferred to be more enriched in the more incompa-
tible elements (Niu et al. 1996, 2002, 2012; Niu and O’Hara
2003). Furthermore, during ascent through the litho-
sphere, the low-F melt can experience cooling-induced
crystallization to form metasomatic amphibolite and/or
pyroxenite veinlets (Hanson 1977; Wood 1979; Zanetti
et al. 1996; Niu 2008; Pilet et al. 2008). Indeed, the pre-
sence of amphiboles, which occurs as interstitial grains in
the mantle xenoliths entrained in these volcanic rocks
indicates the existence of a modal mantle metasomatism
(Yu et al. 2006). Furthermore, these mantle amphiboles
are characterized by enriched incompatible elements and
prominent positive Sr anomaly (Figure 9; Sr/
Sr* = 1.71–3.96) (Yu et al. 2006). Although the partition
coefficients of Sr/Sr* (DSr/Sr* = 2 ×DSr/[DPr +DNd]) between
amphibole and basaltic melt are experimentally deter-
mined to be >1 (DSr/Sr* = 1.42, LaTourrette et al. 1995;
also see the compilations in Dalpé and Baker (2000)),
crystallization of the low-F melt with Sr/Sr* = 1 is still
inadequate to form amphiboles with Sr/Sr* of 1.71–3.96.

Therefore, it requires the metasomatic low-F melt having
Sr/Sr* > 1 to crystallize the mantle amphiboles with pro-
minent positive Sr anomalies. The volcanic rocks from
Jiujiang and Tianyang derived from such low-Fmelt meta-
somatized mantle source thus show characteristics of
enriched incompatible elements and positive Sr anoma-
lies (Figure 9).

Because such low-F melt should have high Nd/Sm,
U/Pb, Hf/Lu (the element on the numerator is more
incompatible than that on the denominator in each
ratio pair), it will develop long-time integrated Pb iso-
topes and unradiogenic Nd and Hf isotopes. However,
the samples from Jiujiang and Tianyang with low
147Sm/144Nd and 176Lu/177Hf and high 238U/206Pb have
high 143Nd/144Nd and 176Hf/177Hf and low 206Pb/204Pb
(Figure 10(b–d)), which is inconsistent with the charac-
teristics of the low-F melt after long-time decay.
Therefore, we support a recent (or ‘current’) low-F
melt metasomatism without enough time for isotope
intergrowth, which is consistent with the understand-
ing of the mantle metasomatism beneath eastern China
(Niu 2005, 2014; Guo et al. 2016; Sun et al. 2017, 2018).
The positive correlation between 87Rb/86Sr and 87Sr/86Sr
(Figure 10(a)) gives a pseudochron age of 1298 Ma. As
the low-F melt metasomatism has been identified to be
recent, this age has no geological significance, but is
best explained by melting-induced mixing with the
pseudochron slope controlled by the compositions of
the two endmembers, i.e. a metasomatic low-F melt
with relatively low Rb/Sr and depleted Sr isotope
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Cenozoic basalts from the Hainan Island are also plotted (Tu et al. 1991; Flower et al. 1992; Ho et al. 2000; Zou and Fan 2010; Wang
et al. 2011). The Jiujiang and Tianyang samples show low Pb/Ce but high Sr/Sr*, which is similar to the amphiboles in the mantle
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Island show high Pb/Ce and relative low Sr/Sr*, which is similar to the clinopyroxenes in the mantle xenoliths (Yu et al. 2006) and
indicates a mantle metasomatism by recycled UCC materials.
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composition and another component with high Rb/Sr
and enriched Sr isotope composition.

5.4 Recycled UCC material metasomatism in the
mantle source region

The UCC material is characterized by enrichment in
LILEs (large ion lithophile elements) and depletion in
HFSEs (high field strength elements; e.g. Nb and Ta)
with negative Sr and Eu anomalies, higher Pb/Ce than
MORB and OIB and enriched Sr-Pb-Nd-Hf isotopes
(Hofmann et al. 1986; Rudnick and Gao 2003; Jackson
et al. 2007; Niu and O’Hara 2009). Therefore, contribu-
tion of the UCC material to the asthenospheric mantle
or the mantle-derived melt will decrease the HFSE/LILE
ratios (e.g. [Nb/Th]N and [Ta/U]N), Sr/Sr*, Eu/Eu

*, 143-
Nd/144Nd and 176Hf/177Hf, but increase Pb/Ce, 87Sr/86Sr
and 206Pb/204Pb in the melt. The Huoju samples have
low [Nb/Th]N, [Ta/U]N, Sr/Sr* and Eu/Eu* (Figure 5) and
positive Pb anomaly (Figure 4) with more enriched Sr-
Nd-Pb-Hf isotopes (Figure 6), which shows apparent
crustal signatures. Furthermore, Sr-Pb-Nd-Hf isotope

ratios show scattered yet significant correlations with
[Nb/Th]N, [Ta/U]N, Sr/Sr* and Pb/Ce (see Supplementary
Figure 1). With Sr-Pb-Nd-Hf isotopes being more
enriched, [Nb/Th]N, [Ta/U]N and Sr/Sr* decrease while
Pb/Ce increasing, which is most consistent with variable
extent of incorporation of UCC material in the volcanic
rocks in the Leizhou Peninsula.

As we have discussed above, such crustal signatures
in these rocks cannot be attributed to the crustal con-
tamination during melt ascent, and thus they must be
inherited from the recycled UCC materials in the mantle
source region. The UCC material present in the mantle
source region was most likely originated from sub-
ducted terrigenous sediments. In Figure 6(c,d), the Pb
isotope systematics indeed show trends from a CIR
(Central Indian Ridge; Mahoney et al. 1989) MORB man-
tle component to a Java terrigenous sediment compo-
nent (Plank and Langmuir 1998). The above inference
confirms our previous interpretations that recycled UCC
material must have added to the mantle source region
of the Cenozoic basalts in Southeast China (Sun et al.
2017). The Huoju samples with more enriched Sr-Nd-Pb
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-Hf isotopes, higher Pb/Ce and lower [Nb/Th]N, [Ta/U]N
and Sr/Sr* must have higher contributions of recycled
UCC materials in the mantle source region.

Because clinopyroxene is an important host for
incompatible elements in mantle minerals, its elemental
and isotopic characteristics have been widely used to
study the nature and intensity of the metasomatic
event (e.g. Norman 1998; Xu et al. 2003; Niu 2004;
Zheng et al. 2006; Tang et al. 2008; Wittig et al. 2009,
2010). Studies on the clinopyroxenes in the mantle
xenoliths entrained in the Cenozoic volcanic rocks
from the Leizhou peninsula show that some clinopyr-
oxenes have high Pb/Ce with relatively low Sr/Sr*
(Figure 9; Yu et al. 2006), which is consistent with
trace element characteristics of the volcanic rocks
from Huoju region and Hainan Island and UCC materi-
als. This further substantiates the existence of recycled
UCC material in the mantle source region beneath the
Leizhou Peninsula and Hainan Island (Tu et al. 1991).

The recycling of UCC material into the asthenospheric
mantle must be recent, because (1) ancient (e.g. >1Ga)
recycled UCC materials with low U/Pb and Th/Pb ratios
should have unradiogenic Pb isotope ratios (Stracke et al.
2003), which is in contrast with the radiogenic Pb iso-
topes of the Huoju samples; (2) the high angle Pb isotope
trend away from the NHRL (Figure 6(c)) that is often
observed in volcanic arc magmas (e.g. Cohen and
O’Nions 1982; Woodhead and Fraser 1985; Vroon et al.
1993) is more consistent with a recent recycling of UCC
material (Hart 1984; Tu et al. 1991). Trace element model-
ling shows that ~6–10% UCC materials were mixed in the
first place with the depleted MORB mantle (DMM) mate-
rials. Such UCC material modified mantle source was then

mixed by variable extents with the metasomatic low-F
melt to form the ultimate mantle source of the volcanic
rocks in the Leizhou Peninsula (Figure 11). Subduction of
the Pacific plate in the Mesozoic along the present SE
China coastline prior to opening of the South China Sea
may have contributed this recycled UCC material as ter-
rigenous sediment into the asthenospheric mantle
beneath the Leizhou Peninsula (Figure 12(a); Tu et al.
1991). After the opening of the South China Sea, the
tectonic setting of the Leizhou Peninsula changed from
a subduction zone environment to an intraplate environ-
ment. The metasomatic agent in the asthenospheric
mantle beneath the Leizhou Peninsula changed from
recycled UCC material to a low-F melt derived within
the asthenospheric mantle. Such low-F melt is enriched
in incompatible elements and volatiles, which is buoyant
and tends to ascend to metasomatize the overlying asth-
enospheric mantle and the base of the lithosphere
(Figure 12(b)). The above inference may not be exact,
but effectively captures the mantle evolution beneath
the Leizhou Peninsula in space and time.

6. Conclusion

(1) The volcanic rocks in the Leizhou Peninsula show
varying elemental and isotopic characteristics.
The samples from Jiujiang and Tianyang show
significant primitive-mantle-normalized positive
Nb, Ta and Sr anomalies with depleted Sr-Nd-Pb-
Hf isotope compositions, while some samples
from Huoju show significant negative Nb and
Ta anomalies, positive Pb anomaly and more
enriched Sr-Nd-Pb-Hf isotope compositions.
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from Salters and Stracke (2004). The low-F melt component is assumed to be represented by an incompatible elements most
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(2) The positive Sr anomaly in the samples from
Jiujiang and Tianyang is not evidence for the pre-
sence of recycled oceanic gabbro in the mantle
source, but is consistent with the incompatible ele-
ment enrichment of the mantle source materials.

(3) A low-F melt mantle metasomatism which is
enriched in volatiles and incompatible elements
is required to explain the incompatible element

enrichment and positive Sr anomaly in these
volcanic rocks. Such mantle metasomatism must
take place recently to account for lacking isotope
ingrowth in the mantle source regions.

(4) Presence of recycled UCC material in the man-
tle source region is also required to explain
the trace element and isotope characteristics
of the volcanic rocks from Huoju. These UCC
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Figure 12. (a) The paleo-Pacific plate subducted along the present Southeast China coastline in the Mesozoic until exotic terranes
(represented by the basement of continental shelf of East and South China Seas) jammed the trench and ceased the subduction activity at
~100 Ma (Niu et al. 2015). UCC material subducted as terrestrial sediment can melt and metasomatize the overlying asthenosphere in the
mantle wedge (Johnson and Plank 2000). (b) After subduction cessation, the Leizhou Peninsula was in an intraplate environment. The
asthenospheric mantle beneath Leizhou Peninsula experienced a low-F melt metasomatism. Such low-F melt enriched in incompatible
elements and volatiles tended to rise (green arrows) due to buoyancy to metasomatize the overlying asthenospheric mantle that had
been pre-modified by a recycling UCC material. The low-F melt can also metasomatize the overlying lithospheric mantle by crystallizing
hydrous minerals (e.g. amphibole) and forming garnet pyroxenite, hornblende-pyroxenite and hornblendite veins in the lithospheric
mantle (Niu et al. 2002, 2012; Niu and O’Hara 2003; Niu 2005). Decompressional melting (red arrows) of such a multiply metasomatized
asthenospheric mantle formed the late Cenozoic volcanisms we studied.
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materials, in the form of terrigenous sedi-
ments, may be subducted recently into the
upper mantle.

Article Highlight

1. These rocks show incompatible element enrichment but
variable isotopic depletion.
2. High bulk-rock Sr does not indicate recycled oceanic gab-
bro in the mantle source.
3. A low-F melt with high Sr enriched the incompatible ele-
ments of the mantle source.
4. A recently recycled UCC material is present in the mantle
source region.
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