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A B S T R A C T

To understand the geochemistry of subduction zone metamorphism, especially the large-scale mass transfer at
forearc to subarc depths, we carried out a detailed study of a∼1.5 m size metabasaltic block with well-preserved
pillow structures from the Chinese Western Tianshan high- to ultrahigh-pressure metamorphic belt. This me-
tabasaltic block is characterized by omphacite-rich interiors gradually surrounded by abundant channelized
(veins) glaucophane-rich patches toward the rims. The glaucophane-rich rims share the same peak metamorphic
conditions with omphacite-rich interiors, but have experienced stronger blueschist-facies overprinting during
exhumation. Representative samples from the glaucophane-rich rims and omphacite-rich interiors yield a well-
defined Rb-Sr isochron age of 307 ± 23 Ma, likely representing this overprinting event. Both glaucophane-rich
rims and omphacite-rich interiors show elevated K-Rb-Cs-Ba-Pb-Sr contents relative to their protolith, reflecting
a large-scale enrichment of these elements and formation of abundant phengite during subduction. Compared
with the omphacite-rich interiors, the glaucophane-rich rims have gained rare earth elements (REEs,> 25%), U-
Th (∼75%), Pb-Sr (> 100%) and some transition metals like Co and Ni (25–50%), but lost P (∼75%), Na
(> 25%), Li and Be (∼50%); K-Rb-Cs-Ba show only 10% loss. These chemical changes would be caused by
serpentinite-derived fluids during the exhumation in the subduction channel. Therefore, there are two stages of
fluid action in the subduction channel. As the formation of phengite stabilizes K-Rb-Cs-Ba at the first stage, the
residual fluids released from the phengite-rich metabasaltic rocks would be depleted in these elements, which
are unlikely to contribute to elevated contents of these elements in arc magmas if phengite remains stable at
subarc depths. In addition, the decrease of U/Pb ratios as the preferred enrichment of Pb over U in the eclogitic
rocks during the first stage chemical alteration may further lead to the lower radiogenic Pb isotope component of
the deeply subducted ocean crust with time, which is inconsistent with the high radiogenic Pb isotope com-
ponent of high µ (=238U/204Pb) basalts.

1. Introduction

The subduction zone metamorphism and related geochemical pro-
cesses are significant for arc magmatism and mantle heterogeneity,
which have attracted much attention in recent years (e.g., Kerrick and
Connolly, 2001; Kelley et al., 2005; Keppler, 1996; McCulloch and
Gamble, 1991; Niu et al., 2002; Niu and O'Hara, 2003; Niu, 2009;
Tatsumi, 2005; John et al., 2012; Bebout, 2014; Marschall and
Schumacher, 2012; Spandler and Pirard, 2013; Zheng and Chen, 2016).

These studies have found that the geochemical behaviors of chemical
elements during subduction zone metamorphism are much more com-
plex than previously inferred through subduction zone magmatism, and
they are not only controlled by the presence and stability of variable
minerals (e.g., El Korh et al., 2009; Hermann and Rubatto, 2009;
Spandler et al., 2003; Xiao et al., 2012, 2013, 2014, 2016) but also
affected by the thermal structure of subduction zones (van Keken et al.,
2011; Zheng et al., 2016) and the physicochemical properties of fluids,
e.g., fluids with dissolved Na-Al silicates or halogen, supercritical fluids
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(Gao et al., 2007; Gao and Klemd, 2001; Haase et al., 2015; Hermann
et al., 2006; John et al., 2008, 2012; Rubatto and Hermann, 2003;
Schmidt et al., 2004; Spandler and Hermann, 2006; Zack and John,
2007; Zheng et al., 2011). The complex subduction-exhumation pro-
cesses (i.e., multiple subduction-exhumation cycles) in subduction
channels proposed in recent studies may lead to more complicated
geochemical processes and consequences (Rubatto et al., 2011; Zheng
and Hermann, 2014; Li et al., 2016; Xiao et al., 2016). Hence, the in-
formation on large-scale fluid-rock interactions in subduction channels
is critically needed for understanding of large-scale mass transfer from
the subducting slab to the overlying mantle wedge, which is essential
towards a genuine understanding of arc magmatism and mantle het-
erogeneity.

It has been proposed that large-scale fluid fluxes and channelized
fluids can facilitate element mobility in subduction zones (e.g., Ague,
2011; Bebout, 2007; Herms et al., 2012; John et al., 2008; Spandler and
Hermann, 2006; Zack and John, 2007; Li et al., 2013; Bebout and
Penniston-Dorland, 2016). In order to better understand the large-scale
mass transfer from the subducting slab to the overlying mantle wedge,
it is best to study subduction-zone metamorphic rocks affected by large-
scale fluid flows, the conduit of which is manifested by large-scale veins
(e.g., John et al., 2012; Spandler and Hermann, 2006; van der Straaten
et al., 2008, 2012). This study focuses on a ∼1.5 m size metabasaltic
block with well-preserved pillow structures from the Chinese Western
Tianshan high-pressure (HP) to ultrahigh pressure (UHP) metamorphic
belt (Figs. 1 and 2). Through a combined study of mineralogy, petrology
and geochemistry, we discuss the behaviors of chemical elements in
response to different stages of large-scale fluid-rock interactions, which
offer insights into the possible large-scale mass transfer, contributing to
our understanding of subduction zone magmatism and mantle hetero-
geneity.

2. Field Geology and petrography

The Western Tianshan HP-UHP metamorphic belt in NW China
(Fig. 1) represents a paleo-convergent plate margin associated with
successive northward subduction of the South Tianshan ocean crust
beneath the Tarim Block during the Carboniferous (Gao and Klemd,

2003; Gao et al., 1999; Su et al., 2010; Klemd et al., 2011; Yang et al.,
2013). This HP-UHP metamorphic belt is composed of pelitic schist,
marble, serpentinite, blueschist and eclogite (Gao and Klemd, 2001;
Wei et al., 2009; Li et al., 2012; Lü et al., 2013; Shen et al., 2015; Klemd
et al., 2011; Yang et al., 2013) with protoliths of sandstone, pelite,
carbonates, peridotite and basalts respectively (Ai et al., 2006; Gao and
Klemd, 2003; Xiao et al., 2012). The Sm-Nd isochron age of ∼343 Ma
indicates the time of subduction metamorphism (Gao and Klemd,
2003), whereas the 40Ar/39Ar and Rb–Sr ages of ∼310 Ma for white
mica are thought to represent the time of retrograde overprint during
exhumation (Klemd et al., 2005). Based on recent findings of coesite
and their distributions (e.g., Lü et al., 2008, 2009, 2013, 2014; Lü and
Zhang, 2012), the Chinese Western Tianshan metamorphic belt has
been classified into HP and UHP metamorphic sub-units (Fig. 1; Lü and
Zhang, 2012).

Numerous studies have shown large-scale fluid-rock interactions in
the Chinese Western Tianshan HP-UHP metamorphic belt (Gao and
Klemd, 2001; Gao et al., 2007; John et al., 2008, 2012; van der Straaten
et al., 2008, 2012; Beinlich et al., 2010; Lü et al., 2012; Li et al., 2013,
2016). Our sampling location is along the Atantayi River (Fig. 1). The
studied metabasaltic block with well-preserved pillow structures
(Fig. 2) is a boulder, which has recently rolled from the steep mountain
slope, and has omphacite-rich domains in the interiors, gradationally
surrounded by abundant channelized glaucophane-rich patches toward
the rims (Figs. 2a–c and 3a). Both omphacite-rich interiors and chan-
nelized glaucophane-rich rims are characteristically dominated by
omphacite, glaucophane, phengite, and epidote as well as locally ac-
cumulated garnet plus some quartz, apatite, and carbonates, but glau-
cophane and epidote modes increase with decreasing omphacite mode
toward rims (e.g., Fig. 2d–g).

Samples for this study are taken as a drilling core from this meta-
basaltic block with well-preserved pillow structures, ∼10 cm long with
a diameter of 2.5 cm (Fig. 2). The drilling core is divided into 4 sections
for convenience, labelled as 22A, 22B, 22C and 22D from the rim sur-
face to the interior (Fig. 2c). These four rock samples contain similar
mineral assemblages with varying modal abundances. Samples 22C and
22D represent the omphacite-rich domain dominated by omphacite and
phengite (Fig. 2d and e), while 22A and 22B represent the glaucophane-

Fig. 1. Geological sketch of the Chinese Western Tianshan HP-UHP metamorphic terrane (after Lü et al., 2013; Li et al., 2013) and our sampling location for this study.
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rich rim with abundant glaucophane and epidote (Fig. 2f and g). No
garnet is present in these samples.

Samples 22C and 22D are mainly composed of omphacite and
phengite matrix with some epidote and glaucophane porphyroblasts
(Fig. 3c–f). Carbonate is locally present together with coarse-grained
omphacite, phengite, and apatite (Fig. 3d and e). Epidote and glauco-
phane porphyroblasts are always euhedral and contain abundant in-
clusions of omphacite, phengite, carbonate, rutile and titanite
(Fig. 4a and b). Glaucophane porphyroblasts also contain epidote in-
clusions. Rutile occurs as inclusions (Fig. 4a) and is locally replaced by
titanite (Fig. 4b and c). Titanite is commonly present as poikiloblasts
containing omphacite, phengite and quartz inclusions (Fig. 4c).

Samples 22A and 22B mainly comprise coarse-grained epidote and
glaucophane (Fig. 3b) with phengite and much decreased omphacite
(Fig. 4f). Carbonate, apatite and titanite are randomly present (Fig. 4f).
More epidote and glaucophane with titanite occur as poikiloblasts and
contain omphacite, phengite and carbonate (Fig. 4d–f), reflecting
stronger blueschist-facies overprinting. Allanite is also present in epi-
dote porphyroblast (Fig. 4e). Rutile has been entirely replaced by tita-
nite.

3. Analytical methods

Each rock sample (22A, 22B, 22C and 22D) from the top surface to
the bottom of the drilling core from the metabasaltic block (Fig. 2c) has
been further cut into three pieces, i.e., the middle chip of the section
was mounted in epoxy resin and polished for mineral analysis
(Fig. 2d–g), while the other two chips were ultrasonically cleaned be-
fore hand-crushed in an agate mortar into powders for bulk-rock ana-
lysis. Considering the highly heterogeneous mineral distribution in
metamorphic rocks, especially the along-core modal variation, this di-
vision method can make the bulk-rock composition of sample powders
to be representative and consistent with the mineral assemblages as
observed in thin sections. Thin sections for the other two drilling cores
from the same metabasaltic block have also been prepared for petro-
graphy study (e.g., Fig. 3).

3.1. Mineral compositions

Major elements of hydrous minerals were analyzed using a JXA-
8100 electron probe micro-analyzer (EPMA) at Chang'an University,
China. The analyses were performed using 15 kV accelerating voltage
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Fig. 2. Field photographs and photos for relationship of our rock samples. (a–b) show the pillow-lava structure of our studied metabasaltic rock, i.e., omphacite-rich interiors with
glaucophane-rich rims, which represent the previous fluid flow passage. The white dotted curve in (a) indicates the pillow margin, and the red dashed circle in (b) indicates the drilling
position for this study. Gln – glaucophane; Omp – omphacite. (c) demonstrates the division of four sections from the top surface to the bottom of the drilling core for this study. (d–g) are
relevant slides for the four sections in (c). These sections clearly show the decrease of glaucophane (bluish) and epidote (yellowish green) modal abundances, but the increase of
omphacite (green) abundance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and 10 nA probe current. Standards used for calibration are: albite for
Na, quartz for Si, orthoclase for K, apatite for P and Ca, magnetite for
Fe, pyrophanite for Mn and Ti, chromite for Cr and Fe, forsterite for Mg,
and jadeite for Al (Xiao et al., 2013). Representative analytical results
of mineral major element contents using EPMA are given in Table S.1.
Mineral trace elements and major elements for anhydrous minerals
were measured on polished sections by using an LA-ICP-MS (Agilent
7500a with GeoLas 2005 193 Eximer Laser sampler) at the State Key
laboratory of Continental Dynamics, Northwest University, China. The
repetition rate of laser ablation is 6 Hz, and the pit size is 32 μm. During
each analysis, the acquisition times for the background (gas blank) and

the sample ablation are 20–30 s and 50 s respectively. United States
Geological Survey (USGS) glasses BCR-2G, BHVO-2G, BIR-1G and one
synthetic glass GSE-1G (Guillong et al., 2005; Jochum et al., 2005) are
used as reference materials. For anhydrous minerals (i.e., omphacite,
and titanite), instead of using the internal standard for calibration, the
concentrations of all the elements of interest (both major and trace
elements) are analyzed simultaneously and calibrated through an in-
ternal standard-independent calibration method (see Liu et al., 2008).
For hydrous minerals, major elements analyzed by using EPMA are
chosen as internal standards for calibration, i.e., Si for amphibole,
epidote group minerals and phengite; Ca for apatite and carbonate. The

Fig. 3. Photomicrographs. (a) Relationship between omphacite-rich interiors and glaucophane-rich rims. The mineral from omphacite-rich interiors can intervene glaucophane-rich rims.
(b) Glaucophane-rich rim, dominated by glaucophane and epidote with phengite. (c–f) are for omphacite-rich interior, dominated by a matrix of fine-grained omphacite and phengite
with some glaucophane and epidote. (e) Locally distributed coarse-grained apatite and omphacite. (f) Locally distributed carbonate, which can be present as the inclusion of glaucophane
porphyroblasts. Mineral abbreviations used in this paper are: Aln – allanite; Ap – apatite; Ca – carbonate; Ep – epidote; Gln – glaucophane; Omp – omphacite; Ph – phengite; Qz – quartz;
Rt – rutile; Ttn – titanite (mostly referred to Whitney and Evans, 2010).
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analytical uncertainty is within 10% and the precision determined by
repeated analysis of GSE-1G is generally better than 5%. During ana-
lysis, inclusions are purposely avoided. Analytical results of mineral
trace element contents are given in Table S.2.

3.2. Bulk-rock major and trace elements

Bulk-rock major and trace element contents were analyzed at
Northwest University, China. The major elements were analyzed by
using X-ray fluorescence (Rigaku RIX 2100 XRF) on fused glass disks
with analytical precision better than 5% as determined by duplicate
analyses. An additional sample powder ∼1 g is heated in a muffle
furnace at 1000 °C for loss on ignition (LOI) determination.

For the trace element analysis, 50 mg sample powders were digested
in an HF + HNO3 mix in high-pressure Teflon bombs at 190 °C for 48 h.
After being dried, 3 ml 50% HNO3 was added and sample powders was
dissolved again in high-pressure Teflon bombs at 150 °C for 12 h. Rh as
an internal standard was added to sample solutions, which are finally
diluted to 80 g. ICP-MS (Agilent 7500a) was used for trace element
analysis with analytical accuracy better than 5% for most trace ele-
ments. The analytical results of bulk-rock compositions are given in
Table 1.

3.3. Sr-Nd isotope

Sample digestion for Sr-Nd isotope analysis was done at the
National Cheng-Kung University, Taiwan. Sample powder of 100 mg
was decomposed in a high-pressure bomb by 3 ml concentrated
HF–HNO3 mixture at 190 °C for 24 h. After being dried, 5 ml 6N HCl
was added, followed by conversion to nitrate form (see Liu et al., 2015).
The Sr and Nd separation was done at the Institute of Earth Sciences,
Academia Sinica in Taipei through a two-column technique using Bio-
Rad AG50W-X8 and Ln-B25-A (Eichron) resins respectively (Jahn et al.,
2009).

Finnigan MAT-262 thermal ionization mass spectrometer (TIMS) and
Finnigan Triton TIMS were used for Sr and Nd isotope analyses respectively.
The Sr and Nd isotopic ratios were normalized against the value of

86Sr/88Sr = 0.1194 and 146Nd/144Nd= 0.7219 respectively. The 2σ values
for all the analyses are less than 0.000007 for 87Sr/86Sr and less than
0.000008 for 143Nd/144Nd (Table S.3). The measured isotopic ratio for
NBS987-Sr standard is 87Sr/86Sr = 0.710245 ± 0.000010 (2σ) and that
for JMC Nd standard is 143Nd/144Nd= 0.511817 ± 0.0000007 (2σ),
which are consistent with the data of Shellnutt et al. (2012;
0.710248 ± 0.00001, 2σ) and Jahn et al. (2009; 0.511821 ± 0.000016,
2σ) respectively.

4. Analytical results

4.1. Mineral compositions

In chondrite normalized trace element diagram (Fig. 5), epidote
from 22A (representing the glaucophane-rich rim) show greater varia-
tions of Th, U and rare earth elements (REEs) than 22D (representing
the omphacite-rich domain; 10–104 times vs. 102–103 times the chon-
dritic values, Fig. 5a). Allanite as the core of an epidote crystal from
22A contains the highest REEs (e.g., 3192 ppm in analyzed point 22A-
C4-1, Table S.2; Figs. 4e and 5a), while some other epidote crystals
from 22A show only several ppm REEs (Table S.2). Apatite also shows
consistently high REEs-Th-U-Sr (up to 10–100 times the chondritic
values, Fig. 5c). Carbonate has high Sr contents (> 10 times the
chondritic value, Fig. 5e). All the analyzed points on phengite from
both 22D and 22A generally share a similarly high contents of large ion
lithophile element (LILE), including Ba-Rb-Cs (10–103 times the chon-
dritic values, Fig. 5b). Glaucophane shows low contents for most trace
elements of interest (Fig. 5f) except Li and Be (up to>10 ppm Li and
several ppm Be; Table S.2). Glaucophane from 22D shows generally
higher Be than that from 22A (several ppm vs. lower than detection
limits; Table S.2).

Titanite is characterized by high Nb and Ta contents (up to 3 orders
of magnitude higher than the chondritic values) and heavy rare earth
elements (HREEs;∼10 times the chondritic values, Fig. 5d). Omphacite
also shows low contents for most trace elements of interest (Fig. 5f), but
contains the highest Li and Be among all the analyzed minerals (tens of
ppm Li and several ppm Be; Table S.2).
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Fig. 4. SEM-EDS photographs. See caption of Fig. 3 for mineral abbreviations. (a–c) are for omphacite-rich cores, while (d–f) are for glaucophane-rich rims. (a) and (d) display variable
mineral inclusions in epidote porphyroblasts from the omphacite-rich interior and glaucophane-rich rim respectively, including omphacite, phengite, rutile, titanite and quartz. (b) A big
glaucophane porphyroblast with its variable mineral inclusions including titanite and rutile, and an epidote poikiloblast with omphacite, rutile and phengite inclusions. (e) shows allanite
composition core of the epidote porphyroblast. (c, f) Abundant variable mineral inclusions in titanite with rutile residuals, i.e., omphacite, phengite, and quartz. Epidote, glaucophane and
titanite poikiloblasts from both omphacite-rich interiors and glaucophane-rich rims generally share similar mineral inclusions, i.e., omphacite, phengite, quartz, and rutile, which indicate
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4.2. Bulk-rock major and trace element contents

From 22D to 22A with increasing extents of blueschist-facies over-
printing, major element contents vary, reflecting controls of mineral
modal abundances. Al2O3 content obviously increases towards

glaucophane-rich rims (Table 1), consistent with the increasing modal
abundance of epidote resulting from addition of Al associated with
blueschist-facies overprinting. Whereas, Na2O and P2O5 contents
slightly decrease towards glaucophane-rich rims (Table 1; Fig. 6b),
consistent with less omphacite and apatite respectively.

Table 1
Bulk-rock compositions of omphacite-rich interior and glaucophane-rich rim of metabasaltic rock from the Chinese Western Tianshan HP-UHP metamorphic belt.

Sample
name

22A 22B 22C 22D Slope to
data point

Gain/Loss
relative to 22D

Scaled

40% Gln + 15% Ph
+ 5% Omp+ 40% Ep
+ some (Ttn + Ca)

20% Gln + 15% Ph
+ 20% Omp + 40% Ep
+ some (Ttn + Ca + Ap)

5% Gln + 25% Ph
+ 40% Omp+ 25% Ep
+ 5% (Ttn + Ca + Ap)

5% Gln + 25% Ph
+ 50% Omp + 15% Ep
+ 5% (Ttn + Ca + Ap)

22A/22D ΔCi/Ci
o Ci

o (22D) Ci
A (22A)

wt.%
SiO2 46.27 46.01 46.30 46.46 0.996 −0.011 48.00 47.80
TiO2 1.51 1.56 1.56 1.52 0.993 −0.014 1.00 0.99
Al2O3 19.42 18.98 17.75 17.26 1.125 0.117 47.00 52.88
TFe2O3 7.68 7.76 6.59 6.71 1.145 0.136 46.00 52.65
MnO 0.04 0.04 0.04 0.04 1.000 −0.007 45.00 45.00
MgO 4.67 4.60 4.96 5.29 0.883 −0.124 44.00 38.84
CaO 9.78 10.49 10.49 10.35 0.945 −0.062 43.00 40.63
Na2O 1.93 2.05 2.42 2.78 0.694 −0.311 42.00 29.16
K2O 3.71 3.46 4.16 4.01 0.925 −0.082 38.00 35.16
P2O5 0.13 0.12 0.22 0.53 0.245 −0.756 41.00 10.06
LOI 4.42 4.51 5.05 4.61 0.959 −0.048 40.00 38.35
TOTAL 99.56 99.58 99.54 99.56

ppm
Li 8.09 8.67 13.4 15.9 0.510 −0.494 12.00 6.12
Be 0.87 0.93 1.40 1.53 0.571 −0.433 11.00 6.28
Sc 30.1 31.3 30.4 29.3 1.028 0.021 10.00 10.28
V 233 237 239 237 0.979 −0.028 9.00 8.81
Cr 177 177 175 159 1.114 0.106 8.00 8.91
Co 46.0 43.6 34.6 36.6 1.255 0.245 7.00 8.78
Ni 120 117 76.5 84.2 1.424 0.414 6.00 8.54
Cu 63.6 57.8 62.4 137 0.463 −0.541 5.00 2.31
Zn 74.9 71.2 60.1 65.4 1.144 0.136 4.00 4.58
Ga 24.2 24.1 20.2 18.9 1.281 0.272 3.00 3.84
Ge 1.27 1.34 1.18 1.13 1.122 0.113 2.00 2.24
Rb 57.4 53.8 64.0 62.6 0.916 −0.090 36.00 32.99
Sr 549 563 335 262 2.095 1.080 32.00 67.05
Y 19.4 20.9 15.2 13.8 1.401 0.390 19.00 26.61
Zr 156 165 164 155 1.008 0.001 31.00 31.26
Nb 13.8 14.0 14.5 15.1 0.908 −0.099 39.00 35.41
Cs 1.62 1.52 1.82 1.78 0.909 −0.098 35.00 31.81
Ba 434 400 470 461 0.941 −0.066 37.00 34.81
La 14.3 14.6 12.4 10.3 1.397 0.387 28.00 39.11
Ce 34.1 35.2 29.1 24.3 1.404 0.394 27.00 37.92
Pr 4.49 4.68 4.07 3.40 1.320 0.310 26.00 34.31
Nd 19.9 20.7 18.0 15.2 1.306 0.296 25.00 32.64
Sm 4.80 5.07 4.28 3.65 1.314 0.304 24.00 31.52
Eu 1.72 1.84 1.45 1.23 1.397 0.387 23.00 32.14
Gd 4.83 5.24 4.26 3.64 1.327 0.318 22.00 29.20
Tb 0.76 0.81 0.65 0.56 1.356 0.346 21.00 28.48
Dy 4.13 4.48 3.44 3.08 1.338 0.328 20.00 26.76
Ho 0.75 0.81 0.60 0.55 1.363 0.353 18.00 24.54
Er 1.86 1.97 1.46 1.38 1.347 0.337 17.00 22.90
Tm 0.22 0.23 0.17 0.17 1.331 0.321 16.00 21.29
Yb 1.23 1.26 0.95 0.89 1.392 0.382 15.00 20.88
Lu 0.16 0.16 0.13 0.12 1.365 0.355 14.00 19.11
Hf 3.52 3.74 3.64 3.47 1.015 0.007 13.00 13.19
Ta 0.87 0.90 0.91 0.88 0.995 −0.012 34.00 33.82
Pb 2.72 2.74 1.60 1.24 2.185 1.169 33.00 72.10
Th 1.45 1.39 1.07 0.89 1.633 0.621 30.00 48.98
U 0.46 0.50 0.31 0.26 1.758 0.746 29.00 51.00

La/Ta 16.5 16.3 13.7 11.7
Th/Nb 0.11 0.10 0.07 0.06
Ta/U 1.90 1.81 2.90 3.35
Nb/U 30.0 28.2 46.2 58.0
Ce/Pb 12.6 12.8 18.2 19.5
Nb/Ta 15.8 15.6 15.9 17.3
Th/U 3.17 2.81 3.41 3.41
Rb/Sr 0.10 0.10 0.19 0.24
Sm/Nd 0.24 0.24 0.24 0.24
U/Pb 0.17 0.18 0.20 0.21

The highlighted (i.e., SiO2-MnO-TiO2-Ta-Zr-Hf) are reference elements for isocon ploting, and the acquired slope of isocon is 1.0073.
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By using commonly accepted immobile high field strength elements
(HFSEs) and HREEs (Pearce, 2008), the four rock samples in this study
plot within the mid-ocean ridge basalts (MORB)-oceanic island basalts
(OIB) array, close to the data point for enriched-MORB (E-MORB) and
OIB (Fig. 6a). Furthermore, these rocks consistently show similar trace
element patterns to that of E-MORB (Fig. 6b) except for the notably
higher K-Rb-Ba-Pb-Sr contents and stronger L(light-)REE/HREE frac-
tionation. With increasing extents of blueschist-facies overprinting from
22D to 22A, contents of Th-U-REEs-Pb-Sr and some siderophile ele-
ments (e.g., Co, Ni) variably increase (Fig. 6b; Table 1), while Li and Be
contents tend to decrease (Table 1). K-Rb-Cs-Ba contents show only
slight differences, and no obvious change of HFSEs or Sc-V among the
four rocks (Fig. 6b; Table 1).

4.3. Sr-Nd isotopes

The four bulk samples yield a well-defined Rb-Sr isochron age of
307 ± 23 Ma (MSWD = 6.9) and an initial 87Sr/86Sr ratio of
0.70461 ± 0.00015 (Fig. 7a; using ISOPLOT 3 of Ludwig, 2003). This
Rb-Sr isochron age, within error, overlaps with the age of the rehy-
dration overprint at ∼310 Ma for the Chinese Western Tianshan HP-
UHP metamorphic belt in literature (Gao and Klemd, 2003; Klemd
et al., 2005, 2011), and thus represents the time of blueschist-facies
overprinting during exhumation. The limited range of 147Sm/144Nd
ratios (0.143–0.148) does not give a useful Sm-Nd isochron age. The
initial Sr-Nd isotope values of the four samples calculated at 310 Ma
give (87Sr/86Sr)310Ma of 0.704560 to 0.704614 and εNd(t) values of
+1.9 to +2.1 at t = 310 Ma (Table S.3). In Fig. 7b, all the Sr-Nd iso-
tope data points for the four samples plot as a cluster in the MORB-OIB
mantle array.

5. Discussion

5.1. Geochemical behaviors of chemical elements

The exhumed HP-UHP metamorphic rocks of oceanic subduction
zones are always an integrated product, which is likely to have ex-
perienced a series of geochemical processes including seafloor altera-
tion during protolith generation, chemical alteration during subduction
and retrograde overprint during exhumation in the subduction channel
(e.g., Xiao et al., 2016). As discussed above, mineral assemblages and
mineral inclusions in glaucophane and epidote porphyroblasts from the
glaucophane-rich rims and omphacite-rich interiors are similar
(Figs. 2–4). This reflects that both glaucophane-rich rims and ompha-
cite-rich interiors have experienced a similar eclogite-facies peak me-
tamorphic condition. However, more epidote and glaucophane por-
phyroblasts replacing omphacite towards glaucophane-rich rims
(Figs. 2 and 3) reflect that the glaucophane-rich rim experienced a
greater extent of overprinting than the omphacite-rich interior. These
petrological results indicate that our studied four rock samples have
similarly experienced two main stages of geochemical alteration in the
subduction channel with different extents of blueschist-facies over-
printing. Therefore, it is important to identify various effects of these
geochemical processes on the behaviors of chemical elements at dif-
ferent stages.

5.1.1. Seafloor alteration
Ba and Rb have been found to behave similarly during subduction

zone metamorphism as they are preferentially sequestered into phen-
gite (e.g., Hermann and Rubatto, 2009; Xiao et al., 2012, 2014, 2016).
However, it has been reported that seafloor alteration can lead to ob-
vious enrichment of Rb (9 times of the original) but not Ba (Kelley et al.,
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2003). Hence, the rocks that have experienced seafloor alterations are
expected to have low Ba/Rb ratios. In Fig. 8, the four rock samples show
relatively lower Ba/Rb ratios than those of seafloor basalts while no
fractionation of Ba/Rb ratios among these rock samples, probably in-
dicating the effects of seafloor alteration on the trace element sys-
tematics of these rock samples.

5.1.2. The first stage chemical alteration during subduction
Given the E-MORB-like protolith composition as shown in Fig. 6,

our rock samples show commonly elevated contents of K-Rb-Cs-Ba-Pb-
Sr compared to those in E-MORB (Fig. 6b), and thus these elements

cannot be inherited from the protolith. As all these four rock samples
have experienced eclogite-facies metamorphism with different extents
of blueschist-facies overprinting as manifested by mineral assemblages
(Figs. 2 and 3), the consistency in the elevated contents of K-Rb-Cs-Ba-
Pb-Sr in these rocks relative to their E-MORB-like protolith suggests
that the large-scale enrichment of these elements occurred during the
eclogite-facies metamorphism when the first stage chemical alteration
took place in the subduction channel before the blueschist-facies
overprinting.

5.1.3. The second stage chemical alteration during exhumation
The blueschist-facies overprinting of metabasaltic pillow interiors

and rims to variable extents represents the second stage chemical al-
teration in the subduction channel. We take omphacite-rich 22D with
the least blueschist-facies overprint as representing the rock composi-
tion before this overprint. Considering the increasing extents of blues-
chist-facies overprinting from 22D to 22A (Figs. 2d–g and 3), the sys-
tematic elemental changes from 22D to 22A (Fig. 6b; Table 1) indicate
that P-Na-Mg-K-Ca-Al-Fe, Th-U-REEs-Pb-Sr-Li-Be, some transition me-
tals (e.g., Co and Ni) have been mobilized to varying extents, while Rb-
Cs-Ba, HFSEs and Sc-V have been largely conserved with blueschist-
facies overprinting at the second stage chemical alteration in the sub-
duction channel.

To further understand the mass change with blueschist-facies
overprinting during exhumation, we chose the highly overprinted
glaucophane-rich 22A to compare with 22D in an isocon diagram
(Fig. 9a). The slope of isocons defined by immobile SiO2-MnO-TiO2-Ta-
Zr-Hf is 1.0073, very close to 1, and thus indicates a very small mass
loss or gain (Grant, 2005). As the data points plotted above and below
the isocon reflect the element gain and loss respectively, the most
evident changes with blueschist-facies overprint are: (1)> 100% Pb
and Sr gain; (2) ∼75% U-Th gain; (3)> 25% REEs gain; (4) 25–50%
transition metal (e.g., Ni and Co) gain; (5) ∼25% and 75% Na and P
loss respectively; (6) ∼50% Li and Be loss. On the other hand, Sc-V-Nb
and LILE (K-Rb-Cs-Ba) show insignificant changes from 22D to 22A, i.e.,
no more than 10% gain or loss. Given the immobility of Ta, Zr and Hf,
the increase of La/Ta and Th/Nb ratios but the decrease of Ta/U and
Nb/U ratios from 22D to 22A (Fig. 9b) further reflects the addition of
REEs (represented by La)-Th-U with blueschist-facies overprinting.

5.2. Controls on the geochemical behaviors of chemical elements

Based on our previous studies (Xiao et al., 2014, 2016), the geo-
chemical behaviors of trace elements during subduction zone meta-
morphism have been found to be controlled by a number of factors,
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particularly the formation and stability of specific minerals in meta-
morphic rocks. Heterogeneous compositions of metamorphic minerals
and bulk rocks are determined by element availability, i.e., the in-
herited composition and the competition between coexisting minerals
(Xiao et al., 2016), which is also controlled by the presence and stability
of metamorphic minerals. For an open system, variable physicochem-
ical compositions and abundances of fluids can affect the behaviors of

chemical elements (e.g., John et al., 2012; Spandler and Hermann,
2006; van der Straaten et al., 2008, 2012; Zack and John, 2007), and
thus can further affect the compositions of metamorphic minerals and
bulk rocks. The studied metabasaltic block has large-scale channelized
(veins) glaucophane-rich rims surrounding the omphacite-rich inter-
iors. As veins represent previous fluid flow passages, the large-scale
channelized glaucophane-rich patches reflect the presence and action of
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large-scale fluid flux in the subduction channel (Bebout, 2007).
As K-Rb-Cs-Ba-Pb-Sr are expected to be enriched in meta-sedimen-

tary rocks (e.g., Breeding et al., 2004; Hermann and Spandler, 2008),
the common enrichments of these elements during the first stage che-
mical alteration in the subduction channel may have resulted from
addition of these elements by fluids released from subducting sedi-
ments. Furthermore, considering the significance of phengite in hosting
K-Rb-Cs-Ba (Fig. 5b; e.g., Sorensen et al., 1997; Spandler et al., 2003; El
Korh et al., 2009; Zheng et al., 2011; Xiao et al., 2014, 2016), this
enrichment facilitates abundant phengite formation as observed
(Fig. 3), which results in the great conservation of these elements
during this process as manifested by even much higher contents of these
elements in the four studied rock samples than those in OIB (Fig. 6b).

With the blueschist-facies overprinting during the second stage
chemical alteration in the subduction channel, the increase of REEs-Sr-
Pb-Th-U with increasing extents of blueschist-facies overprinting
(Fig. 9) manifests precipitation of these elements in the form of epidote
from external fluids (Figs. 5a and 10; e.g., Xiao et al., 2014, 2016). The
obvious decrease of Li and Be contents during this process is consistent
with the loss of Li and Be associated with the replacement of omphacite
by glaucophane. Because transition metals are enriched in mantle rocks
relative to mantle-derived basaltic rocks and show immobility during
serpentinization (e.g., ∼100 ppm vs. ∼30–∼50 ppm for Co,
∼800–∼2000 ppm vs. 10 s–100 s ppm for Ni, Niu, 2004; Niu and
Batiza, 1997), the correlated increase of Co and Ni contents from the
omphacite-rich interior to the glaucophane-rich rim (Fig. 8b) suggests
that the fluids responsible for the blueschist-facies overprinting may be
derived from serpentinite (van der Straaten et al., 2008, 2012), which is
the most significant fluid budget in the subducting slab and crucial for
element mobility in the subduction channel (Barnes et al., 2014;
Deschamps et al., 2012; Herms et al., 2012; Rüpke et al., 2002, 2004;
Scambelluri et al., 2014; Shen et al., 2015; Spandler et al., 2014; Stern
et al., 2006).

Whereas, K-Rb-Cs-Ba contents show rather insignificant changes
(only ∼10% loss) with blueschist-facies overprinting, although these
elements were thought to be easily mobilized with fluids, especially in
an open system (e.g., Breeding et al., 2004; van der Straaten et al.,
2012; Xiao et al., 2014). This is different from the result of recent
studies by van der Straaten et al. (2008, 2012) for metabasaltic rocks
with pillow structures affected by similar blueschist-facies overprinting
from the Chinese Western Tianshan HP-UHP metamorphic belt, i.e.,
even up to ∼200% of K-Rb-Cs-Ba have been gained during blueschist-
facies overprinting. The insignificant mobility of LILEs during blues-
chist-facies overprinting in our studied rocks may be attributed to the
significant conservation of LILEs in abundant phengite, the formation of
which resulted from the commonly great enrichments of LILEs during
the first stage chemical alteration in the subduction channel. Mean-
while, it also reflects insignificant addition of LILEs by serpentinite-
derived fluids during the blueschist-facies overprinting, which thus
cannot lead to the formation of more phengite. Hence, after the reaction

between phengite-rich metabasaltic rocks and large fluid fluxes derived
from serpentinite, K-Rb-Cs-Ba can be still largely conserved and show
limited mobility. However, in studies of van der Straaten et al. (2008,
2012), phengite modal abundance in the eclogitic interior is much
lower (e.g., no more than ∼10%, van der Straaten et al., 2008) while
more phengite formed during blueschist-facies overprinting (e.g.
∼20%, van der Straaten et al., 2008) due to addition of the fluids from
serpentinite but with crucial addition of sediment-derived component.

5.3. Geodynamic implications

The slab-mantle interface composed of diverse lithologies and
characterized by high permeability can facilitate the formation of
channelized fluids as well as intense fluid-rock interactions, which may
enhance element mobility (e.g. Bebout, 2007; Beinlich et al., 2010;
Breeding et al., 2004; John et al., 2008; Li et al., 2013; van der Straaten
et al., 2008; Zheng, 2012). The common enrichment of K-Rb-Cs-Ba in
our studied rocks during the first stage chemical alteration in the sub-
duction channel reflects the mobility and introduction of these ele-
ments, most likely derived from dehydration of the subducting sedi-
ments. This enrichment facilitates abundant phengite formation as
widely observed in our samples, while the residual fluids released from
these phengite-rich metabasalts may be depleted in K-Rb-Cs-Ba. Fur-
thermore, the conservation by the already present phengite and the low
contents of K-Rb-Cs-Ba in the serpentinite-derived fluids during the
second stage chemical alteration in the subduction channel result in no
obvious change of these elements with the infiltration of large fluid
fluxes (Fig. 2a). This indicates that the reaction between phengite-rich
metabasaltic rocks and large fluid fluxes mainly derived from dehy-
dration of the serpentinites cannot make phengite breakdown/dis-
solved or lead K-Rb-Cs-Ba to be mobilized at forearc depths. Therefore,
the elevated contents of K-Rb-Cs-Ba widespread in arc magmas (known
as the arc signature, e.g., McCulloch and Gamble, 1991) may be caused
by the phengite breakdown at subarc depths, where fluid mobile ele-
ments can be transferred from the subducting crust to the mantle
(Zheng et al., 2016). Otherwise, it requires the involvement of super-
critical fluids or hydrous melts originated from the subducting slab
(e.g., Xiao et al., 2012, 2014).

On the other hand, with varying extents of element changes, ele-
ment ratios (e.g., Nb/U, Ta/U, Ce/Pb, U/Pb) will change accordingly,
including radioactive parent to radiogenic daughter element ratios
(Fig. 9b). The common enrichment of Pb but insignificant alteration of
U during the first stage chemical alteration in the subduction channel
(Fig. 6b) indicates the decrease of U/Pb ratios in the highly eclogitized
rocks (e.g., sample 22D), which will further result in the lower radio-
genic Pb isotope component of the deep mantle with time after the
continuous subduction of these materials. Hence, the high µ (HIMU;
µ = 238U/204Pb) OIB may not be caused by the long time-integrated
subducting MORB (e.g., Hofmann, 1997) but by the other mechanism.
For example, Castillo (2015) has proposed that subducting ancient
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marine carbonates can lead to high µ component as high U but low Pb
precipitated from seawater (Xiao et al., 2017).

6. Conclusions

In this study, the glaucophane-rich rims share the similar peak
metamorphic conditions with omphacite-rich cores, but show stronger
blueschist-facies overprinting during exhumation, the age of which has
been constrained to be 307 ± 23 Ma (MSWD = 6.9) by a well-defined
Rb-Sr isochron age. Our rock samples record at least two stages of
chemical alteration in the subduction channel. During the first stage
chemical alteration, K-Rb-Cs-Ba-Pb-Sr are pervasively enriched in the
studied rocks, producing abundant phengite during subduction. The
second stage chemical alteration with blueschist-facies overprinting
resulted in the enrichment of REEs (> 25%), U-Th (> 50%), Pb-Sr
(> 100%) added by fluids and depletion of P (∼75%) – Li and Be
(∼50%) as the result of the formation of epidote and glaucophane at
the expense of apatite and omphacite. The rather insignificant loss of K-
Rb-Cs-Ba (< 10%) with blueschist-facies overprinting results from the
conservation of these elements by already formed abundant phengite,
indicating that the reaction of large fluid fluxes with phengite-rich
metabasaltic rocks has limited effects on the mobility of K-Rb-Cs-Ba
during exhumation. The phengite breakdown at subarc depths is the
key to the elevated contents of these elements in arc magmas; other-
wise, the other mechanisms like supercritical fluids or hydrous melts
from subducting sediments may be responsible for the elevated K-Rb-
Cs-Ba contents in arc magmas. As the decrease of U/Pb ratios in the
highly eclogitized rocks results from the common enrichment of Pb but
insignificant alteration of U during the first stage chemical alteration in
the subduction channel, it will further lead to the lower radiogenic Pb
isotope component of the deeply subducted ocean crust with time, in-
consistent with the feature of HIMU. Hence, the HIMU of OIB may be
caused by the other mechanism, e.g., the subducting marine carbonates
rather than the long time-integrated subducting MORB in the tradi-
tional model.
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