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The East Kunlun Orogenic Belt (EKOB), an important part of the Greater Tibetan Plateau, is an ideal region for un-
derstanding the tectonic evolution of the Anyemaqen Ocean. Here, we present zirconU–Pb ages, bulk-rockmajor
and trace element analyses and Sr–Nd–Hf isotope compositions on representative samples of the syn-collisional
Dulan batholith at the eastern end of the EKOB. The zirconU–Pb age data indicate that the bulk of theDulan bath-
olith was emplaced at 240–235 Ma. The granitoids have high- to medium-K and metaluminous characteristics.
They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted
in some high field strength elements (HFSEs, e.g., Nb and Ta), while having a flat heavy REE (HREEs) pattern.
The mafic magmatic enclaves (MMEs) share the same age, mineralogy and indistinguishable Sr–Nd–Hf isotopes
with their granitoid hosts except for the higher HREE abundances. We show that the MMEs represent cumulate
formed at earlier stages of the same magmatic system. The trace element data (e.g., Nb/Th, Ta/U) and inherited
mantle isotopic characteristics of the Dulan batholith are also consistent with an origin via partial melting of
the last fragments of underthrusting ocean crust. Simple mass balance calculations using the Sr–Nd–Hf isotopic
data show that ~85% Paleo-Tethys MORB and ~15% mature crustal material (the Proterozoic gneiss of the study
area) contribute to the source of the granitoids. The Dulan batholith shows compositional similarities to the bulk
continental curstwith inheritedmantle isotopic signatures. The syn-collisional felsicmagmatismmust have con-
tributed to the net continental crust growth in the EKOB. We infer that the Kunlun and Qinling orogens may ac-
tually be one single orogen offset later by the Wenquan fault system.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The Greater Tibetan Plateau is a geological amalgamation that com-
prises a number of accreted blocks separated by suture zones (Fig. 1a).
The continental collision events are progressively younger fromnortheast
since the Early Paleozoic (e.g., ~450 Ma, the North Qilian Orogen; Huang
et al., 2015; Song et al., 2007, 2013; Xu et al., 2010; Yang et al., 2015) to
southwest in the Cenozoic (e.g., ~55 Ma, Yarlu-Zangbo suture; He et al.,
2007; Ji et al., 2009; Lee et al., 2009; Mo et al., 2005; Zhu et al., 2015).
Hence, the Greater Tibetan Plateau is also known as “Orogenic Plateau”
(Xu et al., 2007). The syn-collisional granitoids and volcanic rocks in the
Lhasa Terrane (Fig. 1a) are well studied (e.g., Dai et al., 2015; Ji et al.,
2009; Kang et al., 2009; Mo et al., 2003, 2005, 2007a, 2007b, 2008;
Ravikant et al., 2009; Sun et al., 2015;Wenet al., 2008),while the research
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ng.niu@durham.ac.uk (Y. Niu).
on the northern collisional zones is relatively limited. The East Kunlun
Orogenic Belt (EKOB),which is in the northern part of the Greater Tibetan
Plateau, contains voluminous syn-collisional felsic rocks and records the
history of the Anyemaqen Ocean (Chen et al., 2015a; Hu et al., 2015;
Huang et al., 2014; Liu et al., 2015; Xia et al., 2014). Most importantly,
the EKOB is an important component of the Central Orogenic Belt of
China (Jiang, 1993; Yin and Zhang, 1998) and lies at the triple junction
of the Kunlun, Qinling and Qilian orogenic belts (Fig. 1b). It is an ideal
site to discuss the tectonic evolution of these orogens.

Based on the research of syn-collisional granitoid rocks which show
remarkable compositional similarity to the bulk continental crust in the
Lhasa Terrane (also called Gangdese magmatic belt), Niu et al. (2013)
hypothesized that continental collision zones are primary sites of net
continental crustal growth. This hypothesis overcomes the shortcom-
ings of the standard “island-arc model” (i.e., continental crust is
produced through subduction-zone magmatism; Taylor, 1967). Com-
parisons between “continental collision zone model” and “island-arc
model” were discussed in detail by Niu and O'Hara (2009) and Niu
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Fig. 1. (a) Simplified map of the major tectonic units of the Greater Tibetan Plateau (after Mo et al., 2008; Niu et al., 2013). The plateau was amalgamated through a series of continental
collision events progressively younger from northeast to southwest. (b) Schematic map showing that the East Kunlun Orogenic Belt (EKOB) lies nearby the triple junction of the East
Kunlun, West Qinling and Qilian orogenic belts (after Yan et al., 2012). (c) Topographic image showing the sub-tectonic zones of the EKOB (from http://landsat.datamirror.csdb.cn).
The thin lines in blue indicate suture zones as in (a). Blue circles are sample locations of previous studies (Chen et al., 2015a; Luo et al., 2014; Xia et al., 2014). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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et al. (2013). The East Kunlun magmatic belt is the only one that is
comparable with the Gangdese magmatic belt on the Greater Tibetan
Plateau (Mo et al., 2007b). Hence, the EKOB is another ideal site to test
the hypothesis of the “continental collisional zonemodel” for continen-
tal crust growth (Huang et al., 2014; Mo et al., 2008; Niu and O'Hara,
2009; Niu et al., 2013).

We use the petrology, geochronology, whole-rock major and trace
element compositions and Sr–Nd–Hf isotopic data to constrain the
petrogenesis of the Dulan batholith in the context of the tectonic
evolution of the EKOB.

2. Geology and samples

The Kunlun orogen is divided into West Kunlun and East Kunlun by
the sinistral strike-slip Altyn Tagh fault. The East Kunlun orogenic belt
stretches out about 1500 km and adjoins the West Qinling orogenic
belt to the east. The EKOB has a north–south extension for 50–200 km
with the Qaidm basin to the north and Songpan-Garze terrane to the
south. It can be divided into three tectonic zones on the basis of the
major faults (Fig. 1c; Xia et al., 2015; Xu et al., 2013; Yang et al., 1996).
The oldest basement of the EKOB is the Paleoproterozoic Mohe gneiss
of the Jinshuikou Group that cropped out to the southeast of Xiangride
town (~2390 Ma, Ba et al., 2012; Gong et al., 2012; Hao et al., 2004).
The EKOBpreserves geological records of the Early Paleozoic Caledonian
cycles and the Late Paleozoic to Early Mesozoic Variscan–Indosinian
cycle. The Early Paleozoic granitoids (500–400 Ma) are comparable
with those in the North Qilian orogenic belt (see Appendix Table 1 of
Mo et al., 2007a, 2007b). The Permian–Triassic granitoids are dominant
in the EKOB (~25,000 km2) and account for 50% of the total outcrop area
of the granitoids (Luo et al., 2002). These granitoids, which mainly dis-
play in North East Kunlun and Central East Kunlun (Fig. 1c), are exposed
as large-scale linear plutonic complexes (Fig. 2).

The Dulan batholith (~235 Ma, ~900 km2; Fig. 2) is located at
the east end of the EKOB. It has an additional northward extension
(~100 km; Fig. 1), making the EKOB look like a rotated letter “b”
(Fig. 1b). The Triassic Dulan batholith (240–235 Ma) intrude the
Mesoproterozoic Xiaomiao formation and Paleoproterozoic Baishahe
formation. Mafic magmatic enclaves (MMEs; Fig. 3a, b), which are
abundant in the collisional plutons (Chen et al., 2015b, 2016; Liu et al.,
2003, 2004, 2015; Luo et al., 2014; Xia et al., 2014, 2015), are common
in the Dulan batholith.

We collected 29 representative samples, including 22 granitoid
hosts, 5 MMEs and 2 granitic gneisses from 24 locations (Fig. 2;
Appendix Table 1) along the major river valleys cross-cutting the
Dulan batholith. These granitoids are medium-coarse grained and
consist of quartz (30–35%), plagioclase (35–40%), K-feldspar (15–
20%), amphibole (10–15%), biotite (b 5%) and accessory minerals such
as apatite, magnetite and zircon (Fig. 3). The evolved granite DLX12–
07 (SiO2 = 75.57 wt.%) is pinkish, fine-medium grained and contains
more quartz (35–40%) and K-feldspar (20–25%). The MMEs are fine
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grained and have the samemineralogy as their hosts, but higher modes
of mafic phases (e.g., amphibole and biotite). TheMMEs are usually len-
ticular and undergoing plastic deformation.
3. Analytical methods

We cut the hand specimen into 1 cm-thick pieces to ensure all
the faces are fresh with saw marks grinded off. The samples were
then crushed into 1–2 cm fragments using a percussion mill. The
fragments were then ultrasonically cleaned in Milli-Q water, dried,
and powdered into 200-mesh. Because the granitoids are coarse-
grained, we grind up to ~500 g powder to ensure representativeness
of the rock samples.
3.1. Zircon U–Pb dating and trace elements

Zircon cathodoluminescence (CL) and reflected-light images were
done at China University of Geoscience, Wuhan (CUGW), where U–Pb
dating and trace element analysis were carried out simultaneously
using LA-ICP-MS. The diameter of the 193 nm excimer later ablation
spot was ~32 μm. For U–Pb dating, natural zircon standard 91500
(Wiedenbeck et al., 1995) was used as external standard while another
zircon standard GJ-1 was used as internal standard. For trace element
analysis, 29Si of U.S. Geological Survey (USGS) reference materials
(BCR-2G and BIR-1G) were used as the external standards and silicate
glass NIST SRM 610 was analyzed to optimize the instrument. Detailed
operating conditions and analytical precisions for the LA-ICP-MS were
described in Liu et al. (2008, 2010). Common Pb correction and age cal-
culation were done using ComPbCorr#3.15 (Andersen, 2002) and
Isoplot/Ex_ver3 (Ludwig, 2003), respectively.
3.2. Major and trace elements

Bulk-rockmajor elements were determined using a Leeman Prodigy
ICP-OES system at China University of Geosciences, Beijing (CUGB). The
USGS standard AGV-2 and two Chinese national geological standards
GSR-1 and GSR-3 were used to monitor the analytical accuracy (±5%,
see Supplementary Table 1) and precision (1σ, b2.0%).

Trace elements were done on an Agilent-7500a ICP-MS at CUGB.
About 35 mg powdered sample was dissolved in equal mixture of
concentrated HNO3 and HF with a digesting Teflon vessel and the
high-pressure bomb for 48 h. Similar procedure was repeated using
concentrated HNO3 for a further 24 h. The digested samples were then
diluted into 2% HNO3 solutions and analyzed using ICP-MS. AGV-2 and
GSR-1 were used to monitor the analytical accuracy and precision
(Supplementary Table 2). Analytical accuracy is better than 5% for
most elements and 6–10% for Cu, Y, Dy, Ho and U.
3.3. Bulk-rock Sr–Nd–Hf isotopes

Bulk-rock Sr–Nd–Hf isotope analysis was done in the Guangzhou
Institute of Geochemistry, Chinese Academy of Science. About 100 mg
sample powderwas dissolvedwith concentratedHNO3 andHFmixture.
Sr was first separated using Sr-Spec resin. AG50W-X12 resin was used
to separate high field strength elements (HFSEs) and rare earth ele-
ments (REEs). Ndwas separated using a conventional di-(2-ethylhexyl)
hydrogen phosphate (HDEHP) method and Hf was separated by
Ln-Spec resin using the procedure following Li et al. (2005). Isotopic
ratios were determined using MC-ICP-MS and corrected for mass
fractionation using 86Sr/88Sr = 0.1194, 146Nd/144Nd = 0.7219 and
179Hf/177Hf = 0.7325, respectively. Repeated analysis of USGS stan-
dards BCR-2, BHVO-2 and JB-3 give values consistent with the
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recommended values (Supplementary Table 3). The mean values for
NBS987 Sr standard and Jndi-1 Nd standard yielded 87Sr/86Sr =
0.710279 ± 29 (2σ, n = 22) and 143Nd/144Nd = 0.512086 ± 14 (2σ,
n = 11), respectively. Multiple analyses of BHVO-2 and JB-3 give aver-
age 176Hf/177Hf of 0.283099 ± 15 (2σ, n = 13) and 0.283216 ± 15 (2σ,
n = 6), respectively.

4. Results

4.1. Zircon U–Pb dating and trace elements

The zircons are colorless to pale brown, euhedral to subhedral with
clear prisms and pyramids and have distinct oscillatory zonings
(Fig. 4i). Some zircon cores display clear “sandglass structure”
(e.g., RSX12-34MME-3; Fig. 4i; Wan et al., 2011; Xue et al., 2010). The
zircons have varying Th (51–693 ppm) and U (116–1109 ppm) with
Th/U ratios of 0.40–0.98 (see Supplementary Table 4), consistent with
being of magmatic origin (Hoskin and Schaltegger, 2003).

The Concordia ages of four granitoid and twoMME samples indicate
that the batholith was emplaced in the time frame of 240–235 Ma (see
Fig. 4). It is worth noting that the MMEs have identical ages with their
granitoid hosts. Meanwhile, we also analyzed zircons of the granitic
gneiss (RSX12-12; Fig. 4h) of the Paleoproterozoic basement
(i.e., Baishahe formation) in the East Kunlun (1: 250,000 Dulan
geological map sheet). The data show that two of the oldest zircons
are ~2.1 Ga. This metamorphic age is important for the basement
histories, but is beyond the scope of this paper.

4.2. Major and trace elements

The total alkalis vs. silica (TAS) diagram (Fig. 5a) shows that the
Dulan batholith samples are mostly granodiorite with subordinate
Fig. 3. (a) Field occurrences of granodiorite with mafic magmatic enclaves (MMEs) of varying
host granodiorite andMMEswith a gradational contact between the two as indicated by the ligh
granodiorite. Amphiboles in SJK1202 are euhedral with simple twinning. Amp = amphibole,
interpretation of the references to color in this figure legend, the reader is referred to the web
granite and diorite. Sample XRD12-06MME plots in the boundary re-
gion of gabbroic and dioritic rocks, but they are amphibole-rich dioritic
rocks without clinopyroxene (nor orthopyroxene). Most of the samples
are metaluminous (A/NK N 1, A/CNK b 1; Fig. 5b). On SiO2-variation
diagrams (Fig. 6), the granitoids define trends resembling liquid lines
of decent (LLDs; except Na2O). Sample XRD12-06MME whose SiO2 is
lowest has lower Al2O3, but higher Fe2O3, CaO, MgO and MnO. This is
consistent with its high modal amphibole (~50%). According to the
K2O vs. SiO2 diagram (Fig. 6h), the granitoids are high-K to medium-K
Calc-alkaline series.

Both granitoids and MMEs are light REE (LREE) enriched (Fig. 7a)
with [La/Yb]N up to 46.74 (RSX12-22 host). The high abundances and
flat heavy REE (HREE) patterns are consistent with these samples hav-
ing no garnet involved in their petrogenesis. The HREE contents of the
MMEs are higher than the hosts because of greater proportions of
mafic phases (e.g., amphibole and biotite; Chen et al., 2015b, 2016).
The evolved sample DLX12-07 has a large negative Eu anomaly (Eu/
Eu*=0.20; Fig. 7a) as the result of significant plagioclase crystallization
(also negative Ba, Sr anomalies; see Niu and O'Hara, 2009). Fig. 7b
shows that the high field strength elements (HFSE) Nb (vs. Th) and Ta
(vs. U) display obvious negative anomalies with Nb* and Ta* values
(Nb* = [Nb/Th]Sample/[Nb/Th]PM, Ta* = [Ta/U]Sample/[Ta/U]PM, after
Niu and Batiza, 1997; Niu et al., 1999) resembling that of bulk continen-
tal crust (BCC, Rudnick and Gao, 2003; Fig. 8). The average composition
of the granitoids shows remarkable similarity to the bulk continental
crust (Fig. 7b).

4.3. Bulk-rock Sr–Nd–Hf isotopes

The 87Sr/86Sr of the granitoids and MMEs have restricted values
(0.71001–0.71469), but the evolved granite DLX12-07 has a very high
87Sr/86Sr ratio of 0.793407 (Fig. 9a; Appendix Table 3) because of the
size and sub-parallel distribution. (b) Photomicrograph under plane polarized light of the
t-blue dashed line. (c, d) Photomicrographs under crossed polarized light of representative
Bi = biotite, Kfs = K-feldspar, Mag = magnetite, Pl = plagioclase and Qz = quartz. (For
version of this article.)



Fig. 4. (a–g) Panels of zircon U–Pb Concordia diagram. The zircon U–Pb age data indicate that themain parts of the Dulan batholithwere emplaced at 240–235Ma. (h) ZirconU–Pb ages of
the granitic gneiss of the Paleoproterozoic basement. (i) Cathodoluminescence (CL) images of zircons from representative host granitoid andMMEsamples. Yellow circles are the analyzed
spots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

37F. Shao et al. / Lithos 282–283 (2017) 33–44
high Rb/Sr ratio due to significant plagioclase (and alkali feldspars to
some content) crystallization, resembling peralkaline rhyolites (Shao
et al., 2015). Compared with Nd isotopes (εNd(t) = −6.40 to –5.10,
t = 235 Ma, this study; Fig. 10a, c), Hf isotopes are more depleted
(εHf(t) = −0.83 to +3.68). The host granitoids and their MMEs have
indistinguishable Sr–Nd–Hf isotopes. As expected, Nd–Hf isotopes
should correlate with each other and can be explained by the mantle
arraywhich is expected to result frommixing of an enriched component
and the depleted mantle (i.e., εHf = 1.59*εNd + 1.28; Fig. 11b; Chauvel
et al., 2008; Zindler and Hart, 1986). However, the εHf value of the
EKOB granitoids is higher at a given εNd value. Huang et al. (2014) has
discussed the possibility that the elevated 176Hf/177Hf may be caused
by incomplete digestion of zircons because most of the Zr (also Hf,
because of the similar element behavior of them) resides in zircons.
Fig. 9d shows that the Lu-Hf pseudio-isochron age is 424 Ma. This age
is much higher than the zircon U–Pb ages (~235–240 Ma) while the
Rb–Sr and Sm–Nd pseudio-isochron ages are similar to the zircon U–
Pb ages (Fig. 9a-c).

In addition, the 87Sr/86Sr of the granitic gneiss (RSX12-12) is
0.750347, and the 143Nd/144Nd and 176Hf/177Hf are 0.511662 and
0.282232 respectively (initial 87Sr/86Sr = 0.73802, εNd(t) = −17.0,
εHf(t) = −15.5, t = 235 Ma, this study).
5. Discussion

5.1. Syn-collisional granitoids of EKOB

The ophiolites from the Anyemaqen suture zonewere considered as
fragments of the Paleo-Tethys Ocean crust (Bian et al., 2004;
Konstantinovskaia et al., 2003; Sigoyer et al., 2014; Yang et al., 1996,
2009). The Anyemaqen Ocean, which is a part of Paleo-Tethys Ocean
(Fig. 12a), was probably opened at or before the Early Carboniferous ac-
cording to the zircon U–Pb analyses of gabbros (332.8 ± 3.1 Ma; Liu
et al., 2011) and basalts (308.0 ± 4.9 Ma; Yang et al., 2009). The
AnyamaqenOceanmay have been closed at the Early-Triassic according
to the Hongshuichuan formation which is composed of shallowmarine
facies and fluvial facies strata. The angular unconformity between the
Late–Triassic terrestrial Babaoshan formation and the underlying
Early-Triassic shallow marine Naochangjian formation also indicate
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the onset of the collision at the Early-Triassic (Li et al., 2012; Yan et al.,
2008).

The Late Permianmolasses and the absence of the Permianmagmatic
rocks (1:250,000 Geological Map by the Chinese Geological Survey,
2003) indicate a continental uplift event during that time. The absence
of Late Middle–Triassic to Early Late–Triassic strata in East Kunlun dem-
onstrates that partial small-scale collision transferred into comprehen-
sive large-scale collision during this stage. Hence, we can infer that
the Dulan batholith (~235 Ma–240 Ma, also 220 Ma) reported here
are syn-collisional granitoids in response to the collision of the
Songpan-Garze terrane and Qaidam terrane (Fig. 12b).
5.2. Source and melting mechanism of the syn-collisional granitoids

The petrogenesis of the Triassic granitoids of the EKOB is controver-
sial. Xia et al. (2014) interpreted the Xiao-Nuomuhong pluton
(~222 Ma; middle part of the EKOB) as the mixture of thickened
lower crust derived melts and lithospheric mantle derived melts in
response to slab breakoff of the Paleo-Tethys seafloor. Chen et al.
(2015a) also considered the granodiorites from Qimantage area (240–
238Ma; west of the EKOB) as a result of slab breakoff during the transi-
tion from subduction to collision. Luo et al. (2014) proposed that the
Xiangride intrusion (~223 Ma) was originated from ancient lower
crust resulted from basaltic magma underplating after post-collisional
lithosphere delamination although the mechanism of delamination is
unclear (Lee and Anderson, 2015; Sacks and Secor, 1990).

Bowen (1928) proposed that granite can also be products of crystal-
lization differentiation frommantle-derived basaltic magma under high
temperature (900–1000 °C) and water-undersaturated conditions. The
Hf isotopic data of Dulan batholith (εHf(t) = −0.83 to +3.68) and
other East Kunlun Triassic granitoids (Fig. 10c, d; Ding et al., 2015;
Huang et al., 2014; Xia et al., 2015; Zhang et al., 2015) are indicative of
significantmantle contribution. Fig. 8 shows that theNb* and Ta* values
of the Dulan batholith are obviously lower than the values of the
peralkaline rhyolites resulting from protracted fractional crystallization
of mantle-derived alkali basaltic melts (Shao et al., 2015). Since the
DNb ≈ DTh b DTa ≈ DU during magma evolution (Niu and Batiza,
1997), the lower Nb/Th (or Nb*) and Ta/U (or Ta*) feature of the
granitoids (which is identical to the BCC, also see Fig. 7b) must have
been inherited from sources or source histories. Therefore, the Dulan
batholith cannot be products of mantle-derived basaltic magma. The
bulk-rock Nd isotopic feature (εNd(t) = −6.40 to−5.10) of the Dulan
batholith suggests that theremust be contributions of continental crust-
al materials. Because the pre-existing old crustal materials have rather
lower Nd and Hf isotopes (e.g., RSX12–12,εNd(t) = −17.0 and
εHf(t) = −15.5, t = 235 Ma; Fig. 11b; Appendix Table 3), this mature
crustal materials cannot be the main sources of the syn-collisional
Triassic granitoids.

Partial melting of the basaltic oceanic crust can produce large
volumes of andesitic plutons with mantle isotope signature (Chen
et al., 2015b, 2016; Huang et al., 2014; Mo et al., 2008; Niu et al.,
2013; Zhang et al., 2015). Here we infer that the underthrust Paleo-
Tethys oceanic crust may be the most probable candidate for the syn-
collisional andesitic magmatism of the EKOB. Simple Sr–Nd–Hf iso-
tope mass balance calculation shows that melting of source rocks
equivalent to ~85% Paleo-Tethys MORB and ~15%mature crustal mate-
rial (Proterozoic gneiss, RSX12-12) can explain the petrogenesis of the
Dulan batholith (Fig. 11). For themechanism and conditions of the par-
tial melting of the ocean crust and sediments,Mo et al. (2008) proposed
that the ocean crust and sediments can melt under amphibolite face
conditions (also see Niu et al., 2013). The underthrusting cold
Anyemaqen Ocean crust evolves along a high T/P geothermal path
and has longer time to absorb heat from the prior hot active continental
margin. The highly hydrated ocean crust (along with minor terrestrial
sediments) begins to melt when it reaches the hydrous basaltic solidus
under amphibolite conditions (see details in Mo et al., 2008; Niu et al.,
2013).

The origin of MMEs in granitoids has been the subject of debate
(e.g., Barbarin, 2005; Chappell, 1996; Chen et al., 2015b; Dahlquis,
2002; Dodge and Kistler, 1990; Niu et al., 2013), but Chen et al.
(2015b, 2016) demonstrated that the coeval MMEs in the North Qilian
Orogen (~430 Ma) are most consistent with early stage cumulate of
mafic minerals of the same magmatic system, which argues against
the interpretations of mantle melt origin (e.g., Barbarin, 2005; Chen
et al., 2009) and the restite model (e.g., Chappell, 1996; Chen et al.,
1989). The Nb* and Ta* of the MMEs (except YDE12-05) are higher
than the host granitoidswhich have similar values to the bulk continen-
tal crust (Fig. 8). This can be explained by the high partition coefficients
of Nb (vs. Th) and Ta (vs. U) in amphiboles and Ti–Fe oxides because the
MMEs represent accumulation of more mafic compositions dominated
by amphiboles. Here we also consider that the coeval MMEs are
early liquidus mineral cumulate as they have the same mineralogy
(but more mafic mineral, e.g., Amp and Bi), age and indistinguishable
Sr–Nd–Hf isotope compositions as the host granitoids.

5.3. Quantitative modeling of our interpretation

We have done simple batch melting calculations (Fig. 13) with sev-
eral reasonable assumptions to illustrate that partial melting under
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amphibolite face conditions: (1) the protolith is ~85% MORB and ~15%
mature crustal material indicated by Sr–Nd–Hf isotopes discussed
above; (2) the composition of the MORB is a combined “75% N-MORB
and 25% E-MORB” based on the fact that about 75% of MORB with
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are 66.4 wt.% hornblende, 4.4 wt.% ilmenite and 29.2 wt.% plagioclase
(Niu and Lesher, 1991); (5) the mineral/melt partition coefficients
(Kd) used are from the Geochemical Earth Reference Model (http://
earthref.org/KDD/ and cf., Niu and O'Hara, 2009).
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Fig. 13 shows 5%, 10%, 20% and 30% batch melting of the chosen
protolith. The model abundances of Th, Nb, U, Ta, Pb and LREEs match
the Dulan batholith and bulk continental crust compositions reasonably
well. The negative anomalies of Nb and Ta (vs. Th, U and La) are pro-
duced with amphibole and ilmenite as residual phases. The calculated
HREEs are higher than Dulan batholith and BCC. The HREEs contents
will be lowered after crystallization ofmaficminerals dominated by am-
phibolite and minor biotite as indicated by the REE patterns of the
MMEs (Fig. 7). The Nb/Th and Ta/U ratios will be reduced accordingly
against the protolith (Nb/Th = 4.78, Ta/U = 1.09), because the bulk
partition coefficients DNbN N DTh, DTaN N DU (DNb = 0.42, DTh = 0.014,
DTa = 0.383, DU = 0.008; see above). As a result, the negative Nb* and
Ta* anomalies are observed in Fig. 8. In conclusion, 10% and 20%melting
match the Dulan batholith and BCC better. The molding result provides
circumstantial evidence in support of our interpretation, although this
does not necessarily mean that the Dulan batholith is exactly produced
by 10%–20% melting of the above assumed protolith.

5.4. Tectonic implications for the Qinling, Qilian and Kunlun orogenic belts

The Dulan batholith lies at the triple junction of the East Kunlun,
West Qinling and Qilian orogenic belts (Fig. 1b). Jiang (1993) named
Kunlun, Qinling and Dabie orogens (~4000 km) the Central Orogenic
Belt (COB) in order to emphasize their integrity and that they are locat-
ed in the middle of China. The broadly-defined COB also contains the
Qilian orogenic belt (Sun and Tian, 2001; Yin and Zhang, 1998; Zhang
and Liu, 1998). The COB records both Proto-Tethys Ocean and Paleo-
Tethys Ocean related subduction and collision events (Yin and Zhang,
1998; Zhang and Liu, 1998). The Tethys Ocean is thought to have been
characterized by having multiple small continents as the result of
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breakup of the Gondwana supercontinent and accretion of the Eurasia
continent (Bian et al., 2004; Dong et al., 2011; Konstantinovskaia et al.,
2003; Li et al., 2015; Pan et al., 1997; Sigoyer et al., 2014; Xu et al.,
1998; Yang et al., 1996, 2009).

Yan et al. (2012) proposed that theWest Qinling orogen is an accre-
tionary wedge-shaped terrane and plunged into the Qilian and Kunlun
orogenic belts during the Triassic (also see Fig. 8 of Xu et al., 2013).
Considering: (1) the Triassic granitoids are widespread along the West
Kunlun, East Kunlun and Qinling orogenic belts (e.g., Chen et al., 2013;
Huang et al., 2014; Li et al., 2015; Liu et al., 2003, 2004; Luo et al.,
2014; Xia et al., 2014; Zhang et al., 2015); (2) the East Kunlun and
West Qinling orogenic belts are separated by the northwest-southeast
dextral strike-slip Wenquan fault; (3) the distribution of the Triassic
plutons and volcanic rocks at the eastern end of the Kunlun orogen
(e.g., Xiangride, Reshui and Yingdeer plutons; Fig. 2) and the western
end of the Qinling orogen (e.g. Daheba, Tarxu and Xinghai plutons;
from 1: 1,000,000Geological Map of the Tibeten Plateau by Chengdu In-
stitute of Geology and Mineral Resources, 2003) are parallel to the
Wenquan fault, we infer that the Kunlun and Qinling orogensmay actu-
ally be one single orogen offset later by the Wenquan fault system. Fig.
12c shows this scenario. Under the near north–south compression (F1)
caused by the continental collision between the Qaidam terrane and
Songpan-Garze terrane (Yin and Zhang, 1998), the Kunlun-Qinling
orogen will yield near west–east tension and developed conjugated
faults (A and B). The Wenquan fault was developed along shear plane
A and this can also explain the distribution direction of the Triassic
plutons and volcanic rocks. There are two groups of strike-slip fault
(NNW and NE; Sun, 2014) which are consistent with these two sets of
conjugate faults system in the East Kunlun and West Qinling. Kuhai-
Shaishitang ophilitemélange zone is located in the Kunlun-Qinling con-
junction area, northeast to the Dulan batholith. This zone developed all
kinds of deformation, such as structural lens, shear fold, boudin and
mica fish (Sun, 2014). In conclusion, these geological observations sup-
port our inference.

As discussed in Section 5.2, the petrogenesis of theDulan batholith is
consistent with an origin via partial melting of the last fragments of
underthrusting Anyemaqen Ocean oceanic upper crust and the REE
and trace element patterns of the Dulan batholith show remarkable
similarity to the BCC (Fig. 7b). We thus suggest that the hypothesis of
“continental collision zones as primary sites for net continental crust
growth” (Niu et al., 2013) is applicable in the EKOB.

6. Conclusion

1. The ~240–220Ma Dulan batholith of the EKOB is the product of syn-
collisional magmatism during or shortly after the closure of the
Anyemaqen Ocean.

2. The granitoids and MMEs have identical zircon U–Pb ages and also
share the same mineralogy and indistinguishable Sr–Nd–Hf isotopic
compositions, which support the recentmodel by Chen et al. (2015b,
2016) that the MMEs represent earlier mafic cumulate of the same
granitoid magmatic system.
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3. The petrogenesis of the Dulan batholith of the EKOB is consistent
with an origin via partial melting of the last fragments of under-
thrusting Anyemaqen Ocean oceanic upper crust under amphibolite
facies conditions. Simple Sr-Nd-Hf isotopes mass balance calcula-
tions show that ~85% Paleo Tethys Oceanic MORB and ~15%
continental material (Proterozoic gneiss) contribute to the source
of the magmatism.

4. The Dulan batholith shows close compositional similarities to the
bulk continental curst and has inherited mantle isotopic signatures.
We demonstrate that the hypothesis “continental collision zones
are primary sites for net continental crust growth” applies in the
EKOB.
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