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Slab breakoff: a causal mechanism or pure convenience?
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The idea of lithosphere delamination has long been conceived
as a mechanism to cause tectonic uplift, metamorphism and mag-
matism in active orogenic belts [1–3]. Since the publication of the
two seminal papers by Davies and von Blanckenburg [4,5], the idea
of slab breakoff has been more widely accepted over the last
�20 years as the favored mechanism to cause collision zone mag-
matism and exhumation of subduction-zone metamorphosed
rocks. These two papers showed the physical probability of
slab-breakoff during continental collision and illustrated possible
geological consequences using the Alpine geology as an example.
Currently, slab-breakoff seems to have been axiomatically
accepted as the causal mechanism in studies of continental colli-
sion-related magmatism. In this short paper, I do not intend to
deny the probability of slab breakoff nor to object the possible geo-
logical consequences, but emphasize that caution must be exer-
cised when invoking ‘‘slab-breakoff” as a causal mechanism
without physical and geological justifications or if evidence clearly
indicates otherwise or contradictory.

Fig. 1 is a set of histograms using the data from the Web of
Science. Fig. 1a shows the number of papers on ‘‘slab breakoff”
published each year since 1995 (histogram) and the total number
of papers published on the subject up to each of these years (cumu-
lative curve). Fig. 1b shows the citations of these papers and reads
accordingly. Fig. 1c and d gives the same type of the information on
papers that invoke slab breakoff as the mechanism causing
observed magmatism. Fig. 1e and f shows the similar on papers
that consider slab breakoff as a possible or probable mechanism
responsible for the exhumation of subduction-zone metamor-
phosed rocks (blueschist and eclogite facies rocks). From the
increasing trend over the years, it is expected that the number of
papers and citations both will continue to rise. It is possible that
such increase and rise may indeed reflect more research with
stronger support or verification of the breakoff related interpreta-
tions, but it could also be a bandwagon effect because of the
increasing popularity and convenience. While slab breakoff may
indeed take place [6], and this could in some way facilitate magma-
tism and ease tectonic exhumation [7–11], we can readily see,
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however, that the effect of the ‘‘slab-breakoff” is likely over-
stretched in the current literature.

Fig. 2 shows a few examples from the literature that use
slab-breakoff to explain geological observations. Fig. 2a invokes
slab-breakoff to explain the exhumation of high- and ultra-high-
pressure eclogites produced from subducted passive margin crus-
tal lithologies. But slab-breakoff may not be required because the
eclogites are volumetrically minute (<10%) hosted in the volumet-
rically significant granitic gneisses (>90%), whose bulk density
(�2.8 g cm�3) is much smaller than that of the subducting/sub-
ducted mantle lithosphere (>3.2 g cm�3). The large buoyance con-
trast and the weak contact between the buoyant crust and dense
mantle section of the slab can readily facilitate separation of the
two. The straightforward point is that the eclogite-hosting granitic
gneisses exhume, but the lithologies of mantle section of the slab
do not. The latter will not exhume unless they are highly serpen-
tinized with added buoyancy. The inference here is that serpentine
diapirs can be, in some cases, important in the exhumation of some
high- and ultrahigh-pressure metamorphic rocks [12]. Fig. 2b-d
invokes slab-breakoff to allow hot asthenosphere to enter the man-
tle wedge, providing both materials and heat for magmatism, as if
the mantle wedge is ‘‘vacuum” with below-slab asthenosphere
freely flowing into the mantle wedge. This is physically unlikely
(see below). Fig. 2e is a highly-exaggerated scenario, which is even
more difficult unless there is rather significant overlaying plate
extension that permits passive upwelling and decompression
melting such as beneath extensional settings (e.g., ocean ridges,
back-arc spreading centers and continental rifts). Fig. 2f invokes
ridge subduction to explain the Mesozoic granitoid magmatism
and associated mineralization in eastern China. Ridge subduction
is known to take place at present (e.g., the Chilean Rise subducting
beneath South America), but subducting ridges are at high angles
with the trench to ensure well-maintained slab pull. If the ridge
is parallel or sub-parallel to the trench, there would be no slab pull
for continued subduction because the ridge lithosphere is the thin-
nest and weakest without cohesion. These are the few examples of
many that seem to follow the crowd without analyzing the likeli-
hood in terms of basic geology and physics. There are also many
good examples of researchers who revise their thinking when they
have discovered their original creative ideas, despite being popular,
are no longer supported by the new observations. I discuss and
illustrate the obvious problems as follows:
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Fig. 1. (Color online) Histograms showing number of papers published each year since 1995 on slab breakoff (a) used to explain orogenic magmatism (c) and tectonic
exhumation (e). Panels (b), (d) and (f), respectively, show number of citations of these papers up to each of these years as shown. The data are from Web of Science as of
November 15, 2016.
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1. Slab-breakoff is expected not to produce voluminous
magmatism

Fig. 3a is an ideal scenario of seafloor subduction beneath active
continental margins (e.g., the Andean-type), where subducting-
slab dehydration induced mantle wedge melting produces basaltic
magmas parental to arc magmatic rocks. Mantle wedge corner flow
as indicated by the arrowed lines is a consequence of down-going
slab dragging. This corner flow convection cannot be directly
observed, but must be true because of seismic anisotropy, dynamic
modeling, and the required supply of fertile mantle material to
maintain the longevity of subduction-zone magmatism. The latter
is further supported by the fact that arc magmas are geochemically
more depleted if the mantle-wedge material has been previously
depleted beneath a back-arc basin (vs. settings without back-arc
spreading). Subduction would stop (or stop shortly) upon conti-
nental collision [8,17]. It follows that mantle wedge corner flow
would diminish and flux-melting would also diminish if they do
not stop immediately. Slab-breakoff may happen, but if it does,
the ‘‘gap” or ‘‘void” created (Fig. 3b) is where the only volume is
made available to be filled by adjacent asthenospheric material
from both above and below. There is no ‘‘vacuum” or free space
available in the mantle wedge for voluminous hot asthenosphere
to flow from beneath the slab and fill the wedge above the slab,
contrary to the speculative scenarios in Fig. 2. Hence, it is physi-
cally unlikely to have the speculated voluminous asthenosphere
decompression melting as the heat source to cause melting of
the overlaying continental plate as popularly interpreted (Fig. 2).
We should note, however, that the subducting/subducted upper
ocean crust can melt, but this is not caused by slab breakoff [7].

2. Observations that do not support slab-breakoff

von Blanckenburg & Davies [5] made a classic case of slab-
breakoff as the cause for syncollisional magmatism and tectonics
in the Alps. However, a recent high-resolution P-wave tomography



Fig. 2. Selected cartoons from the literature that use slab breakoff to explain tectonic exhumation of ultrahigh pressure eclogites (a [12]), syncollisional magmatism (b [13],
c [10], d [14], e [15]) and ridge subduction and mineralization (f [16]).
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study [18] demonstrates that the Alpine slab is in fact continuous
without breakoff, questioning the validity of previous interpreta-
tions of syncollisional magmatism as the result of successive slab
breakoffs along the Alpine-Zagros-Himalaya orogenic belt, also rul-
ing out slab-breakoff as a possible mechanism for Alpine topogra-
phy. Kohn & Parkinson [19] and many others invoke slab-breakoff
during India-Asia collision to explain the exhumation of eclogites
and widespread syncollisional granitoid magmatism in southern
Tibet. While the slab-breakoff model has gained wide acceptance,
it remains unclear if slab-breakoff indeed took place during this
collision because there is thus far no smoking-gun evidence in sup-
port of the breakoff interpretation. Existing tomographic studies
(seismic Vp), as exemplified in Fig. 4a [20,21], seem to show that
the Indian plate remains continuous beneath the Greater Tibetan
Plateau, suggesting that complete slab breakoff may not happen
(see below). Although the validity of this tomographic interpreta-
tion needs verifying, we should not ignore these studies in explain-
ing the syncollisional granitoid magmatism in southern Tibet.

Fig. 4b shows the mantle seismic shear velocity (Vs) structure
beneath the Greater Tibetan Plateau [22]. The high Vs layer of
�100 km thick at depth of �100–200 km extends continuously
from beneath India northward throughout the Tibetan plateau,



Fig. 3. (a) Cartoon showing the general perception on slab-dehydration induced mantle wedge melting and induced crustal magmatism at active continental margins (e.g.,
the Andean-Type), where slab-dragged mantle wedge corner flow is important. (b) Cartoon illustrating that if slab breakoff may indeed take place during continental collision,
the breakoff related asthenospheric flow is restricted to the ‘‘gap” or ‘‘void” made available in space and volume because of the breakoff and it is not possible to have
volumetrically significant hot asthenosphere to flow from below the slab into the mantle wedge above the slab and cause the claimed magmatism as shown in Fig. 2b-f.
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which is most consistent with the underthrust of the Indian conti-
nental lithosphere beneath the Tibetan Plateau lithosphere [21].
This offers evidence against slab-breakoff model, suggesting that
alternative interpretations need considering on the origin of the
syncollisional magmatism preserved in southern Tibet [7]. Impor-
tantly, this recent study [22] also emphasizes that the lithospheric
mantle beneath the Tibetan Plateau has not been thinned through
the process of ‘‘delamination” or ‘‘convective removal” as popularly
favored [1–3], but rather has been thickened, suggesting that con-
tinental collision zones may be potential sites of cratonic litho-
sphere nucleation [22]. This totally reversed interpretation,
‘‘thickened” [22] vs. ‘‘delaminated and thinned” [2] lithosphere
beneath the Tibetan Plateau results from new seismic observations
and the objective and open-minded thinking. We should also note
the low Vs layer underneath the crust and atop the mantle litho-
sphere beneath the Tibetan Plateau (Fig. 4b) is consistent with
radiogenic heat accumulation [22], which can effectively explain
the volumetrically small but widespread Cenozoic high potassic
volcanism on the Plateau [23].

A recent study on a gabbro (vs. basaltic melt composition) with
ocean island basalt signature from southern Tibet is interpreted as
solid evidence for slab breakoff at �45 Ma [24], which, together
with an earlier interpretation of tectonic exhumation at north-
western Himalaya [14], is used to argue for almost synchronous
slab breakoff along the whole length (>2500 km) of the India-Asia
collision zone. We should note that (1) this is not evidence, but an
interesting speculation; (2) if slab breakoff is indeed a primary
cause for volumetrically significant syncollisional magmatism,
such ‘‘smoking-gun” evidence [24] should be widespread along
the whole length of the >2500 km collisional zone, but this is not
the case; (3) the interpreted synchronous breakoff time of
�45 Ma [24] in fact postdates the volumetrically significant syn-
collisional granitoid batholiths (�51 ± 5 Ma) and volcanic rocks
(>52 Ma) in southern Tibet [9], which are thought to have resulted
from the slab breakoff [9]; (4) any attempt to invoke slab breakoff
model for syncollisional magmatism should address the difficulties
elaborated above (Fig. 3).

Indeed, the lack of tomographic evidence for slab breakoff at
present in Fig. 4 cannot be used to argue against its possible hap-
pening some �50 Myrs ago, but if it did happen, the broken slab
fragments of volumetric significance should be seismically
detected in mantle sections beneath the greater Indian-Tibetan



Fig. 4. (a) Topographic elevation and mantle seismic (Vp) tomography of the Tibetan Plateau (modified from [20]). (b) Topographic elevation, crust and mantle seismic (Vs)
tomography of the Tibetan Plateau (modified form [22]).
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region [20], but these are not observed [see 21]. In this context, it is
necessary to emphasize the particularity of the India-Asia collision
that took place �55 Ma, yet the convergence has continued to this
day. The subduction is expected to stop and slab pull as the driving
force must disappear upon continental collision. The continued
India-Asia convergence since the collision is actually a conse-
quence of active subduction of different parts of the same giant
‘‘rigid” Indo-Australia plate [see 17]. The active subduction of the
same ‘‘rigid” plate at the Sumatra-Indonesia trench drags the
India-Asia convergence, thus the continued underthrusting of the
Indian mantle lithosphere beneath the Tibetan lithosphere [17],
which also explains why the position of the India-Asia suture has
migrated northward from �21�N at �50 Ma to �29�N at present
[25]. The Indian + Tibetan mantle lithosphere doubling explains
the thickened lithosphere beneath, and the high elevation of, the
greater Tibetan Plateau (Fig. 4). The Himalayan mountain range
is largely made of piles of scraped Indian crust in response to the
continued convergence.

In summary, I do not take position for or against slab breakoff as
a causal mechanism to explain the collisional processes, but I
emphasize the importance of objective evaluation of existing
observations and open-minded thinking, which will help us to
make logical interpretations whether slab breakoff can indeed hap-
pen during continental collision and if so whether it is required or
sufficient to cause the speculated tectonic exhumation and volu-
metrically significant syncollisional magmatism. If not, alternatives
should be sought to truly advance our science and our scientific
understanding on how the Earth works.
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