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The initial Nd and Hf isotope ratios of a 420 Ma post-collisional dioritic-granitic batholith from the Northern
Tibetan plateau define a negative trend above and orthogonal to the ԐHf(t)-ԐNd(t) terrestrial array. This uncom-
mon trend offers an insight into the origin of the puzzling Nd-Hf isotope decoupling in the crustal rocks. On
this trend, samples depleted in heavy rare earth elements (HREEs, i.e., [Dy/Yb]N ≫ 1) deviate most from the ter-
restrial array whereas samples with flat HREEs (i.e., [Dy/Yb]N ≥ 1) deviate less or plot within the terrestrial array,
pointing to the controlling effect of garnet in the magma source. Ancient garnet-bearing residues after melt ex-
traction will have elevated Lu/Hf ratios and can evolve with time to produce high ԐHf(t) at a low ԐNd(t) value.
Mixing of melts derived from such source lithologies (high Lu/Hf) with melts possessing a within-terrestrial
array Nd-Hf isotopic composition (low Lu/Hf) best explains the observed trend orthogonal to the terrestrial
array. The samples from the Jinfosi batholithwith themost decoupledNd-Hf isotope compositions require a larg-
er degree (N40%) and ancient (i.e., ≥1.8 Gyr) previous melt extraction from their source. It follows that the an-
cient melts with depleted HREEs complementary to those garnet-bearing residues should have low ԐHf values
and plot below the terrestrial array, which is indeed shown by some Archean/Paleoproterozic TTGs.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Extensive isotopic studies of mantle and crustal rocks over the past
decades have led to the wide perception that Lu-Hf and Sm-Nd isotopic
systems behave in a similar fashion duringmagmatic processes, leading
to the globally correlated terrestrial array in the ƐNd-ƐHf space (Chauvel
et al., 2008; Salters and Hart, 1991; Vervoort and Patchett, 1996).
Nevertheless, Nd-Hf isotopic decoupling has been documented and
discussed in many mantle-derived rocks (Bizimis et al., 2003; Nowell
et al., 2004; Salters and Zindler, 1995). The Nd-Hf isotopic decoupling
in the crustal environment is expected, but this has not beenwell recog-
nized. Garnet is a unique major phase that can significantly fractionate
Lu/Hf and Sm/Nd ratios in the crust (Vervoort and Patchett, 1996).
This is because garnet preferentially retains Lu over Hf without signifi-
cantly fractionating Sm from Nd during magmatism (Green et al.,
2000), i.e.,KdLu/Hf

garnet≫1 and KdSm/Nd
garnet≥1. The dominant
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mechanism of crustal anatexis usually leaves garnet as a residual
phase in the deep crust. The residual garnet has elevated Lu/Hf with
moderate Sm/Nd, resulting in much more rapid ingrowth of radiogenic
Hf compared to Nd. Consequently, lower crustal rocks andmany granit-
oids generated by reworking of the ancient lower crust are expected to
have time-integrated Nd-Hf isotopic decoupling. Indeed, Schmitz et al.
(2004) reported significant present-day Nd-Hf isotopic decoupling in
lower crust granulites. In some subduction-related rocks, e.g., slab-
derived adakites, Nd-Hf isotopic decoupling has also been observed
(Polat and Münker, 2004). However, these studies suggested a meta-
morphic origin for the Nd-Hf isotopic decoupling (Schmitz et al.,
2004) and greater fluid mobility of Nd or Hf during metamorphism
(Polat andMünker, 2004). The expected “garnet effect” on lower crustal
rocks in terms of theNd-Hf decoupling, however, appears to be rare and
remains unclear (Vervoort and Patchett, 1996; Vervoort et al., 2000).
This is partly because most Hf isotope data in the study of crustal
rocks are largely zircon in situ analyses rather than whole rock data (It
is common that in situ ԐHf values in different zircons from single samples
can have N10-unit variation at a given whole rock ԐNd), and partly be-
cause most crustal granitoids or their sources are too young to develop
anomalous Hf isotope ratios (Vervoort and Patchett, 1996).

Here, we report our Nd-Hf isotopic study of a post-collisional felsic-
intermediate sample suite in a 420 Ma Jinfosi batholith from the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.lithos.2016.12.025&domain=pdf
http://dx.doi.org/10.1016/j.lithos.2016.12.025
mailto:yaoling.niu@foxmail.com
Journal logo
http://dx.doi.org/10.1016/j.lithos.2016.12.025
http://www.sciencedirect.com/science/journal/00244937
www.elsevier.com/locate/lithos


32 H. Huang et al. / Lithos 274–275 (2017) 31–38
Northern Tibetan Plateau. The negative slope of our data plotted above
and orthogonal to the terrestrial array in the ԐHf(t)-ԐNd(t) space offers
a novel perspective on Nd-Hf isotopic decoupling as the result of the
presence and effect of garnet in granitoid sources of ancient age.

2. Geological background

The North Qilian Orogenic Belt (NQOB), Qilian Block (QB) and North
Qaidam ultrahigh pressure metamorphic belt (NQ-UHPM) form the
Qilian Orogenic belt (QOB) on the Northern Tibetan Plateau (Fig. 1,
Song et al., 2006). The Mohe gneiss within the NQ-UHPM is the oldest
sampled crystalline basement in the QOB, dated at ~2.5 Ga (Li et al.,
2007), and the inherited zircons with ages N2.6 Ga confirm the
existence of an Archean basement in the region (Huang et al., 2015,
2016). Different models have been proposed to explain the tectonic
evolution in the whole QOB (Gehrels et al., 2003, 2011; Huang et al.,
2015; Song et al., 2006, 2013, 2014; Wu et al., 2006, 2010; Xiao et al.,
2009; Xu et al., 1994, 2006; Yang et al., 2002; Yin and Harrison, 2000).
The most recent comprehensive studies suggest that the NQOB, QB
and NQ-UHPM are different products corresponding to one conver-
gence event, during which the subduction was initiated at ~520 Ma,
the ocean basin was closed at 440 Ma, exhumation happened around
~420–400 Ma and final orogen collapsed at ~360 Ma (Song et al.,
2006, 2009, 2013, 2014; Wang et al., 2014). In this model, the NQOB is
considered to be an oceanic suture zone, the QB represents an imbricate
thrust belt, and theNQ-UHPMrepresents a continental-type subduction
zone.

The Jinfosi batholith is one of the largest batholiths in the NQOB,
considered as typical products of intra-crustal differentiation in a syn/
post-collisional setting (Hu et al., 2006; Song et al., 2013; Wu et al.,
2010; Zhang et al., 1995). TheNQOB consists of ophiolites,metamorphic
rocks and arc magmatic sequences. The magmatic rocks are dominated
by calc-alkaline intermediate-felsic volcanic rocks and I-type granitoids
with ages of 516 to 446 Ma (Chen et al., 2014; Wang et al., 2005), gen-
erally coupled with the subduction-related HP metamorphic activities
(489–440 Ma) (Liu et al., 2006; Song et al., 2004, 2006; Wu et al.,
1993; Zhang et al., 1997, 2007). The Jinfosi batholith is ~60 km long
Fig. 1.A, Schematicmap showingmajor tectonic units of theQilianOrogenic Belt (after (Song et
et al., 2013).
and 10–12 km wide, extending in NW-direction in the northwestern
part of the NQOB (Fig. 1, Song et al., 2013). The batholith intruded the
Ordovician back-arc basin volcanic complex and the Silurian sedimenta-
ry sequence. It mainly consists of peraluminous granite, biotite monzo-
nite, and minor diorite (Hu et al., 2006; Song et al., 2013; Wu et al.,
2010; Zhang et al., 1995). Major minerals include varying amounts of
quartz (Qtz), K-feldspars (Kfs), plagioclase (Pl), biotite (Bt), muscovite,
tourmaline and garnet (Grt). Zircon U-Pb dating using the SHRIMP
method yields a weighted mean U-Pb age of 424 ± 3 Ma (Wu et al.,
2010).

3. Methods

Samples were carefully cleaned for analysis of major elements, trace
elements and whole rock Sr-Nd-Pb-Hf isotopes. All the detailed analyt-
ical details are given in Huang et al. (2014). Here is a brief description.
Whole rock Sr, Nd, Pb and Hf isotope analyses were conducted on a
Thermo Finnigan Neptune Plasma Ionisation Multi-collector Mass
Spectrometer (PIMMS) instrument in the Northern Centre for Isotopic
and Elemental Tracing (NCIET) at Durham University. Sr-Nd-Pb-Hf iso-
topic analyses were carried out during different analytical sessions for
each isotope. The international standards NBS987, J&M, NBS981 and
JMC475 were used for Sr, Nd, Pb and Hf isotopes, respectively. The
long term performance of the Neptune PIMMS at Durham University
for Sr, Nd and Hf isotopes was reported by Nowell et al. (2003). The Sr
standard NBS987 yield average 87Sr/86Sr of 0.710277 ± 0.000020
(2SD, n= 39). All data are normalized relative to the accepted standard
87Sr/86Sr ratios for NBS 987 of 0.71024 (Thirlwall, 1991). The average
143Nd/144Nd of J&M is 0.511107 ± 0.000012 (2SD, n = 47). All data
are normalized relative to the accepted standard 143Nd/144Nd ratio for
J&M of 0.511110 (Thirlwall, 1991). The average of Hf standard JMC475
is 0.282145± 0.000008 (2SD, n= 37). Corrections for isobaric interfer-
ences from Yb and Lu on 176Hf were made by monitoring 173Yb and
175Lu. All data are normalized relative to the accepted standard
176Hf/177Hf ratio for JMC475 of 0.28216 Nowell et al. (1998). For Pb,
mass bias was corrected using 205Tl/203Tl ratios and an exponential
law. The best fit ratio for all the Pb ratios was determined for each
al., 2013)). B, Simplifiedgeologicalmapof theNorthQilianOrogenic Belt (NQOB; after Song
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analytical session by minimizing the difference in offset between all Pb
ratios and the Galer (1999) values.

Laser ablation ICP-MS zircon U-Pb analysis was carried on an Agilent
7500 ICP-MS instrument equipped with a GeoLas 2005 at China
University of Geosciences, Wuhan. Detailed operating conditions for
the laser ablation system and ICP-MS instrument and data reduction
are the same as described by Liu et al. (2008). Zircon 91,500 was used
as the external standard and analyzed twice every 5 samples. Standard
silicate glass NIST610was used to optimize the instrument. Common Pb
was corrected by ComPbCorr#3_17 (Andersen, 2002). Age calculations
and Concordia plots were made using isoplot (Ludwig, 2003). The ob-
tained mean 206Pb/238U ages for 91,500 and GJ-1 are 1062.3 ± 1.3 Ma
(2σ, n = 202) and 599.7 ± 1.2 Ma (2σ, n = 60), respectively. These re-
sults are consistent with the recommended values (Jackson et al., 2004;
Wiedenbeck et al., 1995).

4. Results

The minerals in samples from the Jinfosi batholith in this study in-
clude Bt, Pl, Kfs and Qtz with Bt varying from 5% to 20%. Some of the
samples are peraluminous granites while others are more mafic and
chemically equivalent to diorites, corresponding to a broad SiO2 range
of 56.8–72.5wt%with A/CNK 0.9 ~ 1.1 (Table S1). The enclosed amphib-
olite xenoliths (QL10-01) are foliated mafic diorite, containing amphi-
bole (Amp), Bt, Pl and Qtz. Major element data, trace element data
and zircon U-Pb dating results are presented as supplements. Whole
rock Sr-Nd-Hf-Pb isotopes are given in Table 1. The Nd-Hf isotope data
plotted in Figures are initial values (ԐNd(t), ԐHf(t)), calculated using
the zirconU-Pb age.Most zircons yield concordant or slightly discordant
U-Pb ages (Fig. 2). The results indicate that the intrusion was emplaced
in the early Triassic ~424 Ma (Fig. 2), consistent with previous work
(Wu et al., 2010). Inherited zircons yield age populations of 450–
500 Ma and 1.0 Ga (Fig. 2), reflecting the earlier magmatic events in
the region (Huang et al., 2015; Song et al., 2013; Wu et al., 2010). The
presence of a discordant age of ~1.4 Ga is indicative of inheritance
from old lithologies.

Whole rock analyses clearly indicate the Nd-Hf isotopic decoupling
had occurred prior to the petrogenesis of the batholith. This is demon-
strated by initial Nd and Hf isotopes which define a negative trend
displaced above and orthogonal to the terrestrial array in the ԐHf-ԐNd
space (Fig. 3). Samples (QL10-05, QL10-08) with higher Dy/Yb values
and distinctively depleted heavy rare earth elements (HREEs) have
highest ԐHf(t) values (Fig. 4). Other samples with lower Dy/Yb values
Table 1
Whole-rock Sr-Nd-Hf-Pb isotopic data of samples from Jinfosi. Age corrected to 420 Ma.

QL10-01 QL10-04 QL10-05

176Lu/177Hf 0.008 0.007 0.004
176Hf/177Hf 0.282921 0.282470 0.282891
2σ 9 10 12
ԐHf(420) 12.64 −3.14 12.78
147Sm/144Nd 0.14 0.11 0.13
143Nd/144Nd 0.512406 0.512310 0.512109
2σ 9 9 12
ԐNd(420) −1.2 −1.9 −6.5
87Rb/86Sr 1.06 1.13 7.21
87Sr/86Sr 0.7114 0.7130 0.7485
ISr(420) 0.705 0.706 0.705
206Pb/204Pb 18.632 18.768 19.265
207Pb/204Pb 15.686 15.710 15.755
208Pb/204Pb 38.797 39.625 39.233
208Pb/204Pbi(420) 38.35 38.52 38.56
207Pb/204Pbi(420) 15.66 15.66 15.74
206Pb/204Pbi(420) 18.21 17.94 19.03

147Sm/144NdCHUR0 = 0.1967,143Nd/144NdCHUR0 = 0.512638, λ(87Rb) = 1.42 × 10‐11 yr−1,λ(147
176Lu/177HfCHUR0 = 0.0332,176Hf/177HfCHUR0 = 0.282772, λ(176Lu) = 1.93 × 10−11 yr−1.
εHf (t) = [(176Hf/177Hf)sample(t)/(176Hf/177Hf)CHUR(t)-1]*104.
(176Hf/177Hf)CHUR(t) = (176Hf/177Hf)CHUR0-(176Lu/177Hf)CHUR0*(eλt-1).
and flat HREEs have relatively lower ԐHf(t) values (Fig. 4), and plot pro-
gressively closer to the terrestrial array (Fig. 3). We note that the
ԐNd(t) values display a positive correlation with MgO, while the
ԐHf(t) values show an unexpected negative correlation (Fig. 5). These
opposing correlations indicate that the Nd-Hf isotopic decoupling is
caused by the anomalous behaviour of Hf isotopes. The enclosed
xenolith plots off the trend defined by the host samples and also has
an unusually high ԐHf(t) for a given ԐNd(t) (Figs. 3, 5B). The samples
exhibit limited variations in their initial Pb isotopes (Pbi)
(208Pb/204Pbi = 38.35–38.61, 207Pb/204Pbi = 15.66–15.74,
206Pb/204Pbi = 17.94–19.16, Table 1) and initial Sr isotopic ratios
(ISr = 0.705 to 0.708, Table 1).
5. Discussion

5.1. Source constraints

Our samples have a large compositional range in SiO2 (57–72 wt%).
The most felsic sample QL10-05 (72% SiO2) may share some “S-type”
features and others have “andesitic” (or “dioritic”) compositions.
Given the peraluminous nature of some samples in this study, sediment
effect on Nd-Hf isotopic decoupling should be considered (Chauvel
et al., 2008; Patchett et al., 1984). The present-day sedimentary mate-
rials generally have elevated ԐHf at a given ԐNd (Chauvel et al., 2008),
but this is not adequate to explain the Nd-Hf isotopic decouplingwe ob-
serve. There are three reasons. (1) Metasedimentary rocks have nega-
tive ԐHf values at 420 Ma and more negative if they are more ancient
(ԐNd ← 15, ԐHf ← 10, Chauvel et al., 2008), while the most felsic sample
QL10-05 with the most decoupled Nd and Hf isotopes have ԐHf(420) of
12.8 and ԐNd(420) of −6.5. (2) Sedimentary rocks have highly radio-
genic Sr isotopes (ISr ≅ 0.718, Plank and Langmuir, 1998) while QL10-
05 has ISr of 0.704. (3) Sedimentary rocks are generally heterogeneous,
but S-type-like granites with decoupled Nd-Hf isotopes are rarely sam-
pled. Specifically, in the Qilian region, other S-type-like batholiths do
not show Nd-Hf isotopic decoupling (Huang et al., 2015; Yang et al.,
2016). Compared to the two-mica granites (Yang et al., 2016) and
S-type granitoids (Huang et al., 2015) in other Qilian Batholiths, ISr
values in this study are less radiogenic (0.705 to 0.708 vs. N0.710),
ԐNd(t) values are higher (−4 to −2 vs. −12.2 to −3.4) and
ԐHf(t) values are much higher (−3.4 to 12.8 vs. −12 to 3.4). Lead iso-
topes are consistent with the Pb isotopic compositions of the regional
crystalline basement (Chen et al., 2007; Zhang et al., 1995). Thus, the
QL10-08 QL10-09 QL10-11 QL10-12

0.002 0.014 0.005 0.008
0.282841 0.282580 0.282495 0.282686
7 8 6 9
11.44 −1.14 −1.59 4.35
0.10 0.12 0.10 0.12
0.512254 0.512250 0.512223 0.512232
12 10 8 9
−3.4 −2.3 −3.1 −3.7
2.54 1.67 2.49 2.87
0.7202 0.7184 0.7206 0.7237
0.705 0.708 0.705 0.706
19.325 19.218 19.586 19.025
15.759 15.748 15.767 15.729
39.520 39.037 39.253 38.925
38.61 38.44 38.62 38.45
15.74 15.71 15.74 15.71
18.97 18.62 19.16 18.69

Sm) = 6.54 × 10−12 yr−1.
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Fig. 2. Zircon U-Pb Concordia diagrams to show the age of Jinfosi batholith.
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isotopic data indicate limited contributions from highly enriched
upper crust.

It is possible that samples with high SiO2 and depleted HREEs result
from elevated accumulation of quartz and feldspars (Wang et al., 2013)
Fig. 3. Initial whole rock ƐNd(t)-ƐHf(t) values of Jinfosi samples and modelling results of ƐNd(t)-
2.5 Ga, 2.0 Ga and 1.8 Ga, respectively. The amphibolite xenolith plots off the sample trend. Globa
are given for reference (Huang et al., 2015). Ticks on each line represent increasing residual garn
to Pl ratios are assumed to be 1:2, 1:1 and 2:1, after Vervoort and Patchett (1996). Grt proportio
isotope data for Mohe basement are from Chen et al. (2007). F: Melt fraction.
or are caused by garnet and amphibole separation at an early evolution
stage. However, the decoupling in our samples are initial values, and
fractional crystallization cannot produce variations in the initial isotopic
signature.
ƐHf(t) values at 420 Ma for residues produced by melting lower continental crust (LCC) at
l terrestrial array (greyfield) is fromVervoort et al. (1999). Qilian Block juvenile granitoids
et percentages from left to right at a given clinopyroxene to plagioclase ratio (Cpx:Pl). Cpx
ns are set from 10% to 50%. Hf isotope data for Mohe basement are from Li et al. (2007). Nd



Fig. 4. A, ƐHf(t)-Dy/Yb plot to show that samples with higher Dy/Yb ratios have higher
ƐHf(t) values and that samples with lower Dy/Yb ratios have lower ƐHf(t) values.
Panel B, chondrite-normalized rare earth element plots (Sun and McDonough, 1989).
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The Jinfosi samples display large Nd-Hf isotopic heterogeneity and
decoupling. Disequilibrium melting of zircon during crustal anatexis
could generate Hf isotope heterogeneity (Tang et al., 2014). But zircon
is a minor phase in the crust, and it is difficult to explain the decoupling
against the observed general correlation of HREE-depletion with high
ԐHf(t). Garnet, as themost important HREE host phase, has the potential
to cause the Nd-Hf isotopic decoupling. To melt the garnet-bearing
lower crust, three scenarios are possible. First, if garnet breaks down
Fig. 5. A, Positive correlation between ԐNd and MgO. B, negative correlation between ԐHf and
xenolith.
during crustal anatexis, the derivative melt would have elevated
HREEs and ԐHf, which is not mirrored in our study. Second, if garnet
does not break down but does not equilibrate with the melt, the
derivative melt would have low HREEs and low ԐHf. Third, if garnet
does not break down and equilibrates with the melt in the garnet
stability field, the derivative melt will have low HREE and elevated ԐHf.
Our samples with elevated ԐHf and depleted HREEs are consistent with
the scenario of equilibrium melting with garnet being a residual phase.

The interpretation of these data is complicated by the fact that the
variation in initial values can reflect source characteristics, crustal
contamination, and magma mixing. However, a common and essential
factor in these models is the incorporation of a component that has a
substantially decoupled Nd-Hf isotopic composition. It is important to
note that the samples with Nd-Hf isotopes that plot furthest away
from the terrestrial array are most depleted in the HREEs with higher
Dy/Yb values, while samples with Nd-Hf isotopes plotting close to or
within the terrestrial array have flat HREEs with lower Dy/Yb values
(Fig. 4). This is a simple manifestation of the “garnet effect”.

5.2. Modelling

It is possible tomodel the involvement of garnet in the generation of
the strongly decoupled Nd-Hf isotope compositions in the Jinfosi sam-
ples. To explore such processes, we use equilibriummelting to illustrate
possible Nd andHf isotope evolution trends as a result of partialmelting
a lower crust with garnet being a residual phase. If the Jinfosi magma
derived from such a source had involved assimilation or mixing
processes, then the measured ԐHf values would be minimal. Hence,
our modelling only provides the conservative estimate.

The ages of ~2.5 Ga, 2.0 Ga and 1.8 Ga correspond to important
episodes of regional continental crust growth (Grimmer et al., 2003;
Tung et al., 2007, 2008). Therefore, the different curves in Fig. 3 repre-
sent the loci of isotopic compositions of the residual lower crust with
previous melt extraction at 2.5, 2.0 and 1.8 Ga, respectively, calculated
at the emplacement age (420 Ma) of the Jinfosi batholith. Re-melting
these residua at 420 Ma will pass on the isotope features to the deriva-
tive Jinfosi magma. In our calculation, the 2.5 Ga Mohe basement was
used as a representative regional lower crust composition (Chen et al.,
2007; Li et al., 2007). It is reasonable to use such an old basement be-
cause the appearance of the discordant U-Pb age of ~1.4 Ga indicates
the inheritance from old lithologies.

To illustrate the concept in detail, a few possible mineral assem-
blages during crustal anatexis (Rapp and Watson, 1995; Rapp et al.,
1991; Vervoort and Patchett, 1996) are examined and only minerals
with great potential to cause fractionations between Lu-Hf and Sm-Nd
systems are considered. Sources of granitoid magmatism are mostly
mafic to intermediate rocks. Therefore, partition coefficients were
chosen for a mafic lower crust source. Values are from Vervoort and
Patchett (1996) who made the pioneering effort to model the effect of
MgO, suggesting the anomalous behaviour in Hf isotopes. Big arrows do not include the



Fig. 6. Compilation of present day Nd-Hf isotopic compositions for Archean-
Paleoproterozoic TTGs showing that they plot below the terrestrial array due to
equilibration with residual garnet, compared to the melting residues with above
mantle-array Nd-Hf isotopes. Vectors are estimated according to Fig. 3. Data are from
Hoffmann et al. (2011), Shan et al. (2015), Yang et al. (2008). Terrestrial array is from
Vervoort et al. (2011).
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garnet on Nd-Hf isotopic decoupling in the lower crust environment.
The results are summarized in Fig. 3. For the given extent of melting
and residual mineral modes, the greatest Nd-Hf isotope decoupling is
coupled with older (more ancient) melt extraction/depletion (pink vs.
blue, orange curves in Fig. 3). The ingrowth of radiogenic Hf isotopes
also increases with increasing residual garnet mode (changes along
the curve, Fig. 3),with increasing extent ofmelting (solid line vs. dashed
line in Fig. 3) and with decreasing Cpx/Pl ratio (numerical ratios in
Fig. 3). The Cpx/Pl = 1:2 curves slightly bend back to the terrestrial
array at garnet modes N30% (Fig. 3) because of the slightly decreasing
Lu/Hf ratios resulting from different extents of Lu-Hf growth in the
modelling. Re-melting of these ancient melting residues at 420 Ma
will produce melts with depleted HREEs and inherited signatures of
Nd-Hf isotope decoupling as manifested by the 420 Ma Jinfosi granitic
samples. In Fig. 3, the sample with the most decoupled Nd-Hf isotopes
at lowest ƐNd value is close to the 2.0 Ga and 2.5 Ga curve. Its isotopic
compositions are consistent with a residue produced by 40% melting
at 2.5 Ga with 15% garnet and a 1:2 ratio of Cpx to Pl (Fig. 3). It can
also be explained by re-melting a residue produced by 50% partial
melting at 2.0 Ga with 30% residual garnet and a 1:2 ratio of Cpx to Pl
(Fig. 3). Melt depletion younger than 1.8 Ga or melting degrees lower
than 40% (50%, only if depletion occurred after 2.0 Ga) will produce
residues with Nd-Hf isotopes that plot within the terrestrial array in
Fig. 3. Although the calculation may seem simplistic and limited given
the possible complexities involved in crustal melting, it adequately
demonstrates that a large extent of melting (N40%) can effectively frac-
tionate Lu-Hf from Sm-Nd system, and that long residence time is re-
quired to ensure that the residues evolve to the isotopic characteristics
inherited by the Jinfosi granitic samples.

The amphibolite xenolith also shows decoupled Nd-Hf isotopeswith
Hf isotopes similar to those of the Jinfosi plutonic samples, but the Nd
isotopic ratios of the amphibolite is more radiogenic than those of the
Jinfosi plutonic samples (Figs. 3, 5A). It is unlikely that this xenolith is
cognate to the Jinfosi magma because the amphibolite has distinct
mineralogy, texture and isotopic compositions (Barbarin, 2005; Huang
et al., 2014). We interpret the xenolith as being country rock captured
during magma emplacement. The presence of this xenolith provides
evidence that the Nd-Hf isotopic decoupling may be common in the
regional lower crust.

The global database for the lower crust shows that a few samples
have super chondritic Lu/Hf ratios that have potential to evolve out of
the terrestrial array (Vervoort et al., 2000). These studies suggest the
possibilities of finding significantly decoupledNd-Hf isotopes in granitic
magmas derived by melting of the lower crust. However, such granit-
oids appear to be rare. It is highly likely that the sources from which
these granitoidswere derivedmay have hadmelt depletion too recently
to have developed significant Nd-Hf isotope decoupling. Vervoort and
Patchett (1996) estimated that hundreds of millions years are required
for a garnet-bearing residue to evolve off the terrestrial array. Indeed,
our modelling specifically requires that the time-integrated evolution
must be longer than 1.4 Gyrs (=1.8 Ga–420 Ma). Additionally, a large
extent of melting (≥40%) is also necessary for significant radiogenic Hf
in-growth and thus enhancesNd-Hf isotope decoupling. This is because,
in addition to the garnet effect, Lu/Hf in the melting residues increases
with increasing extent of melting. 40–50% is unusually high and per-
haps it points to the unusual thermal conditions during the petrogenesis
of the Jinfosi magma and also accounts for the rarity of such magmas
with anomalous Nd-Hf isotopes. Such a large degree of partial melting
may be rare; but it is possible that prior to 1.8 Ga larger amounts of
partial melting occurred given the greater internal heat at that time
(Peacock et al., 1994; Rapp and Watson, 1995; Rapp et al., 1991). For
example, 20–40% melting of mafic lower crust can result in granitic
melts; 50–60% melting can result in more andesitic/mafic melts (Rapp
and Watson, 1995; Rapp et al., 1991). However, residues after such
high degrees of partial melting may be too refractory to melt again un-
less there is an additional heat supply. In the case of the NQOB, this is
feasible in the context of post-collisional extension (~420–400 Ma),
where basaltic melt derived from upwelling hot asthenospheric mantle
could have underplated the crust and causedmelting of ancient residual
crust. The most straightforward way to explain the Jinfosi sample trend
is to mix such basalts with mantle array Nd-Hf isotope compositions
with melts of lower crust with decoupled Nd-Hf isotopes. This is also
supported by the broad negative correlation between ԐHf(t) and MgO
(Fig. 5B) which suggests that samples with higher MgO have lower
ԐHf(t) while samples with lower MgO have higher ԐHf(t). There are
other equally mathematically valid models that can be applied too. For
example, it is possible that an andesitic magma with normal Nd-Hf
isotopes assimilates the highly isotopically decoupled lower-crust.
Alternatively, the Jinfosi sample suite may reflect a series of magmas
derived at different pressures involving different amounts of residual
garnet, i.e., above the garnet-stability field (flat HREEs) and within the
garnet stability field (depleted HREEs). In this case, it requires different
degrees of partial melting accordingly to explain the negatively
correlated ԐHf(t)-MgO trend (Fig. 5). Nevertheless, in all these situa-
tions, a key component with HREE-depletion and decoupled Nd-Hf iso-
topes (“garnet effect”) is required.

The evidence for occurrence of a garnet effect in the lower crust is
limited by the nature of sampling (Schmitz et al., 2004). Extraction of
melt within the garnet stability field will lead to garnet-bearing residua
that evolve rapidly with time, above the mantle Nd-Hf isotope array.
The complementary melts should evolve below the array. Possible ex-
amples are tonalite–trondhjemite–granodiorite (TTG) suites, which
dominate the preserved Archean crustal masses (Condie, 1981;
Hoffmann et al., 2011; Martin et al., 2005). The TTGs were produced
by 20–40% melting at depths where garnet was present as a residual
phase (Rapp andWatson, 1995; Rapp et al., 1991; Xiong, 2006). The lon-
ger crustal residence of TTGs promotes greater evolution and diver-
gence in their isotope compositions. It is thus expected that the
ancient TTGs have present-day Nd and Hf isotopes below the terrestrial
array. We have compiled the available Nd-Hf isotope data for the TTGs
of Archean and Proterozoic age (Fig. 6). Indeed, many of them plot
below the terrestrial array as anticipated. Some of the TTGs plot within
the array, reflecting the complexities of the TTGs petrogenesis,
e.g., some of them may be derived through multiple partial melting
events or a lower extent of melting, and/or lower modal garnet in the
melting residues as evidenced by the abundant TTGs with flat HREEs.
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