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Editorial

Recent advances on the tectonic and magmatic evolution of the Greater
Tibetan Plateau: A special issue in honor of Prof. Guitang Pan
1. Introduction

TheGreater Tibetan Plateau, also known in China as theQinghai–Tibet
Plateau or theQingzang Plateau, is a tectonic amalgamation of numbers of
continental collision events from the northwest in the early Paleozoic to
the southwest in the Cenozoic (cf. Dewey et al., 1988; Pan et al., 2012;
Yin and Harrison, 2000). These collision events resulted in orogenic
belts that record the prolonged albeit complex histories of opening and
closing of Tethyan ocean basins and associated tectonic and magmatic
responses (cf. Chung et al., 2005; Pan et al., 2012; Song et al., 2014; Yin
and Harrison, 2000; Zhu et al., 2013, 2015). Although many aspects
related to these events have been recently synthesized with elegance by
Pan et al. (2012) and Zhu et al. (2013) using data and observations
made available since 2000,many scientific questions, such as the duration
of oceanic basins, the collisional and accretionary processes of different
terranes, the processes responsible for crustal growth, and the mecha-
nisms for economic mineralization, remain underdeveloped and require
further investigations with additional data.

In the last 5 years, there have been abundant new data obtained
from field and laboratory efforts by multiple disciplines of the scientific
community, offering state-of-the-art insights into the tectonic andmag-
matic evolution of the Greater Tibetan Plateau. In this special issue,
some of these new findings and understandings are presented, dedicat-
ed to Prof. Guitang Pan for celebrating his 50 years' endless research on
the geology of the Greater Tibetan Plateau and his instrumental scientif-
ic contributions.
2. Tribute to Prof. Guitang Pan

Guitang Pan (Fig. 1), a senior research professor of the Chengdu In-
stitute of Geology and Mineral Resources (Chengdu, China), was born
in 1941 in Zhejiang, China, and received a BS degree from the College
of Beijing Geology (the predecessor of China University of Geosciences)
in 1965. After graduation, Guitang worked at Southwestern Institute of
Geology (the predecessor of Chengdu Institute of Geology and Mineral
Resources) and developed his major academic career in this institute.

Guitang's research in 1990s includes the Cenozoic uplift of the Tibet-
an Plateau (Pan et al., 1990), the evolution of eastern Tethys (Pan et al.,
1997), and the orogenic processes and associated mineralization in
Sanjiang area in eastern Tibet (Pan et al., 2003). These investigations
allowed Guitang to identify 10 metallogenic belts and reveal the rela-
tionships between tectonic settings and varying mineralization in the
Sanjiang region, for which Guitang was honored a National Scientific
and Technological Progress Award in 2005.
http://dx.doi.org/10.1016/j.lithos.2015.12.005
0024-4937/© 2015 Elsevier B.V. All rights reserved.
In response to the strategic plan by the Chinese Geological Survey in
2000, Guitang took the leadership to have completed a new set of
1:250,000maps of the entireGreater Tibetan Plateauwith newobserva-
tions and high-quality data. On the basis of these large scale maps,
Guitang and his colleagues timely synthesized 1:1,500,000 geological
map of the Greater Tibetan Plateau (Fig. 1) (Pan et al., 2004), which
has laid the foundation for subsequent basic research and mineral ex-
ploration. His innovative idea of “the composite island arc-basin sys-
tems” to interpret the evolution and formation of the Tibetan Plateau
(Pan et al., 2012) has beenwidelywelcomed by the scientific communi-
ty with extensive recognition and citations, for which he was awarded
the 2011 National Science and Technology Progress Grand Prize of
China.

Guitang is one of a rare few geologists in Chinawho investigated the
geology of the entire Greater Tibetan Plateau. His life-time research has
been devoted to problems of tectonics, mineralization, and evolution of
the Greater Tibetan Plateau using field-based multidisciplinary (struc-
tural, stratigraphic, igneous, and metamorphic petrologic) approaches.
Our present view on the origin and evolution of the Greater Tibetan
Plateau would not be the same without Guitang's cornerstone
contributions.

3. Contributions to this issue

The eighteen papers with new data and ideas in this issue encom-
pass some of Guitang's research themes, including the evolution of
Tethyan ocean basins, the generation of ophiolite and chromitite, the
geodynamical processes along the southern geological margin of Asia
(i.e., the active continental margin related to the Neo-Tethyan/Indian
seafloor subduction), and the relationship between magmatism and
mineralization (Fig. 2).

3.1. New insights into the evolution of Tethyan Ocean basins

The Tethyan Bangong–NujiangOceanwas recorded by the extensive
dismembered ophiolitic fragments within the Bangong–Nujiang suture
zone (BNSZ) in central Tibet (Fig. 2). Sengör (1979) and Pan et al.
(1983) proposed over 30 years ago that the Bangong–Nujiang Ocean
lithosphere might have subducted southward beneath the Lhasa
Terrane, separating from the northernmargin of Gondwana, but this fa-
vored subduction polarity has not been widely considered by the scien-
tific community because of the lack of supporting data.

This issue starts with a review article by Zhu et al. (2016-in this
issue), who integrate multidisciplinary data available from the Lhasa–

http://crossmark.crossref.org/dialog/?doi=10.1016/j.lithos.2015.12.005&domain=pdf
http://dx.doi.org/10.1016/j.lithos.2015.12.005
www.elsevier.com/locate/lithos


Fig. 1. A photo of Professor Guitang Pan (taken at Sanjiang by Di-Cheng Zhu, 2014) and the 1:1,500,000 geological map of the Qinghai–Xizang Plateau and adjacent areas
(Pan et al., 2004).

Fig. 2. Location of study areas of the papers included in this issue. Geographicalmap of theGreater Tibetan Plateau is fromhttp://www.bodc.ac.uk/projects/international/gebco/gebco_world_
map/.
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Qiangtang collision zone (Fig. 2). They show that the collision zone is
characterized by two Jurassic–Cretaceous magmatic arcs, one in the
western Qiangtang Terrane to the north and the other in the northern
Lhasa Terrane to the south, by the absence of Early Cretaceous high-
grade metamorphic rocks, and by the presence of extensive
120–110 Ma magmatism throughout the collision zone with enhanced
mantle contributions. These observations allow the authors to propose
that the Tethyan Bangong Ocean floor may have subducted both to
the north beneath the western Qiangtang Terrane and to the south be-
neath the Lhasa Terrane. The authors further argue that the Tethyan
Bangong Ocean may have closed in the Late Jurassic–Early Cretaceous
(most likely ca. 140–130 Ma) through arc–arc “soft” collision that oc-
curred between two active continental margins rather than
continent–continent “hard” collision that took place between a conti-
nent with a passive margin and a continent with an active margin.

Understanding the spreading and subduction histories of the Tethyan
Bangong–Nujiang Ocean requires high-quality age data of the ophiolites
and the knowledge of how subduction-related magmatism may extend
laterally along the arc, but these have been hampered because of lacking
reliable data. For this,Wang et al. (2016-in this issue) report the zirconU–
Pb age and geochemical data of the mafic rocks associated with the
ophiolites within the Bangong–Nujiang suture zone (Fig. 2). These data
show MORB-like gabbros and leucogabbro with emplacement ages of
187−164 Ma, providing constraints on the presence of ocean crust
along the length of the Bangong–Nujiang suture zone in the Early–
Middle Jurassic time, which is corroborated by OIB-type basalts and
gabbros of ~132–108 Ma in the literature. The authors argue that the
Tethyan Bangong–Nujiang ocean basin must have undergone intra-
oceanic subduction during the Early–Middle Jurassic and remained active
until the Early Cretaceous. Y. L. Li et al. (2016b-in this issue) document the
presence of ca. 149 Ma pluton from Kangqiong in the central segment of
the western Qiangtang Terrane (Fig. 2). This pluton has small negative
εNd(t) values with adakitic elemental characteristics (e. g., high MgO
and Mg#) most consistent with an origin of partial melting of the
subducting ocean crust plus minor crustal contamination during magma
ascent. The presence of subducting ocean crust-derived pluton indicates
the development of a west–east Late Jurassic magmatic arc in excess of
800 km, providing a robust constraint on the northward subduction of
the Bangong–Nujiang oceanic lithosphere beneath the central segment
of the western Qiangtang Terrane during the Late Jurassic.

The Paleozoic history of the Greater Tibetan Plateau is poorly
constrained largely due to the rarity of magmatic rocks. In this issue,
Guo et al. (2016-in this issue) report an integrated study of zircon U–
Pb chronology and Hf isotopes on metasedimentary rocks of the
Nyingchi Complex in the southern Lhasa Terrane (Fig. 2) with the re-
sults showing the presence of abundant 330–364 Ma detrital zircons.
Provenance analysis indicates that the detritus was sourced from the
Lhasa Terrane itself. In combinationwith coeval magmatic rocks report-
ed in the literature, the authors suggest that the Lhasa Terrane was
probably under an arc-back-arc setting in association with southward
subduction of the Paleo-Tethys seafloor during the Late Devonian to
Early Carboniferous. Qian et al. (2016-in this issue) report zircon U–Pb
ages of 335.5 ± 3.3 Ma for a diabase dyke and of 304.9 ± 3.9 Ma for a
coarse-grained basalt from Luang Prabang in northwest Laos (Fig. 2).
Geochemical data of the mafic rocks suggest the presence of a back-
arc basin along the Luang Prabang tectonic zone that resulted from
the subduction of the Paleozoic Tethyan seafloor toward beneath
the Sukhothai–Simao Block. G. J. Li et al. (2016-in this issue) report
the presence of highly fractionated granites of 470−460 Ma age
from the Baoshan Block in SE Tibet (Fig. 2). The primary magmas of
these granites are interpreted as deriving from the partial melting
of metasedimentary rocks with small amounts of mantle input. In
combination with other available data, the ca. 470–460 Ma granites
are attributed to the delamination of the thickened lithosphere fol-
lowing the final amalgamation of outboard Asian microcontinents
onto the East Gondwana margin at ~490–475 Ma.
3.2. Age of the Luobusa ophiolite and origin of its chromitites

The Yarlung Zangbo suture zone (YZSZ) in southern Tibet (Fig. 2)
separates the Asian plate to the north from the Indian plate to the
south and marks the site where the Neo-Tethyan Ocean lithosphere
was consumed at a subduction zone dipping northward beneath the
Asian plate. A series of ophiolitic massifs with chromitites are exposed
along the YZSZ. Although these ophiolitic massifs have been investigat-
ed over 40 years, yetwhen and how the ophiolites and chromititeswere
formed remains controversial.

As one of the type ophiolitic massifs in the YZSZ, the Luobusa
ophiolite in the eastern YZSZ has been proposed to be formed during
the Jurassic (cf. Chan et al., 2015 and references therein), significantly
older than the Early Cretaceous ophiolites (120−131 Ma) outcropped
in the central and western YZSZ (cf. Hébert et al., 2012). In this issue,
C. Zhang et al. (2016a-in this issue) report the precise SIMS zircon U–
Pb age data for a gabbroic dyke (128 ± 1 Ma) cutting the serpentinites
and an amphibolite (130.9 ± 1.3 Ma) outcropped within the Luobusa
ophiolite (Fig. 2), identical within analytical uncertainty to the amphib-
olites that have been dated at 134.5 ± 6.9 Ma, 132.0 ± 3.4 Ma, and
134.1 ± 3.2 Ma by the LA-ICPMS titanite U–Pb method. These high-
quality age data indicate that the Luobusa ophiolite was formed during
the Early Cretaceous, coeval with (rather than older than) other
ophiolites along the YZSZ and that the Luobusa ophiolite probably
underwent the intra-oceanic emplacement immediately after its
formation.

The Luobusa ophiolite contains the largest chromite deposit in
China. The Luobusa podiform chromitites have been interpreted as the
consequence of low-pressure reaction of peridotites with boninitic
melts in the upper mantle (Zhou et al., 1996). However, the discovery
of ultrahigh pressure minerals (cf. Yang et al., 2007) challenged
this shallow origin of the Luobusa chromitites. In this issue, Wu
et al. (2016-in this issue) carried out multi-anvil experiments in the
magnesiochromite + SiO2 system at temperatures of 1000–1600 °C
and pressures of 5–15 GPa. The experimental results demonstrate that
magnesiochromite is stable up to 14 GPa anddecomposed into eskolaite
together with a quench-modified ludwigite-structured phase at higher
pressures. This depth corresponds to the top of the mantle transition
zone at 410 km and represents the maximum depth for chromite crys-
tallization and/or metamorphism, supporting a much deeper origin for
the Luobusa podiform chromitites.
3.3. Cenozoic geodynamical processes along the southern margin of the
Asian plate

The southern margin of the Asian plate in southern Tibet experi-
ences the Neo-Tethyan seafloor subduction, the India–Asia collision,
and the underthrusting of the Indian continental lithosphere in the Ce-
nozoic (cf. Chung et al., 2005; Zhuet al., 2015) and thus involves compli-
cated geodynamical processes whose understanding remains far from
satisfactory. For example, Huang et al. (2016-in this issue) report zircon
U–Pb ages of earlier E–W trending (60−53 Ma) and later N–S trending
(17−13Ma)magmatic dykes from Dazi in the central Gangdese Batho-
lith (Fig. 2). These two stages of dykes were interpreted as having de-
rived from partial melting of a lithospheric mantle wedge in response
to slab breakoff of the Neo-Tethyan oceanic lithosphere and of a thick-
ened crust beneath the Lhasa Terrane due to the tearing or delamination
of the subducted Indian lithosphere, respectively. To the eastern
Gangdese Batholith near Motuo (Fig. 2), Pan et al. (2016-in this issue)
identify abundant mafic intrusive rocks of ca. 69 and ca. 50 Ma. These
rocks were interpreted as having derived from partial melting of
metasomatized lithospheric mantle. The new data lead the authors to
argue that the Late Cretaceous delamination may have resulted in the
replacement of ancient lithospheric mantle by the juvenile lithospheric
mantle in the eastern Lhasa Terrane.
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Discrete pockets of fluid (termed “bright spots” in geophysics) are
generally inferred to represent partial melt within the mid-crust
beneath the Tibetan Plateau (cf. Brown et al., 1996). However, the
surficial expression of such melt that refers to as mid-crust-derived Ce-
nozoic silicic rocks is rarely identified so far. Weller et al. (2016-in this
issue) analyze the magmatic and metamorphic history of the Western
Nyainqêntanglha in the central Lhasa Terrane (Fig. 2). Their petrological
and geochronological data reveal the presence of three tectonothermal
events, including the 213−201 Ma tectonism that is suggested to have
resulted from north-south Lhasa Terrane accretion, the 140−52 Ma
magmatism that is attributed to subduction of the Neo-Tethyan oceanic
lithosphere, and the 25−8 Ma magmatism that is interpreted as the
product of partial melting of the thickened Tibetan Plateau mid-crust.
The similarity between the present depth of the imaged “bright spots”
(15–18 km) and the current exposure level of the Western
Nyainqêntanglha (15–20 km) leads the authors to propose that the vo-
luminous Miocene magmatism in the Western Nyainqêntanglha is the
exhumed equivalent of geophysical “bright spots” imaged in the region.

To the southeastern Tibetan Plateau, the widespread Eocene–
Oligocene potassic to ultrapotassic magmatic suites (ca. 35 Ma) have
been linked to the uplift of the Tibetan Plateau (cf. Chung et al., 1998).
However, the petrogenesis of the rock suites remain hotly debated.
Ding et al. (2016-in this issue) investigate the Eocene adakite-like
rocks that are widespread in western Yunnan, SE Tibet (Fig. 2). Their
new geochemical data together with the literature data reveal a west-
ward increase in zircon εHf(t) andwhole-rock εNd(t) values. The adakitic
rocks from the eastern and western parts of western Yunnan were
interpreted as deriving from partial melting of Neoproterozoic mafic
rocks and of late Paleozoic–Mesozoic mafic rocks, respectively, that
underplated in the lower crust at varying stages as a result of the remov-
al of thickened continental lithosphere.

Further to the southwest, the Myanmar is a region to investigate
magmatic response to tectonic transition from oblique subduction to
dextral movement of the Indian oceanic lithosphere along the trench.
Lee et al. (2016-in this issue) examine the geochemistry of the volcanic
rocks from the central Myanmar basin (Fig. 2) and identify a geochem-
ical transition frommid-Miocene calc-alkaline intermediate-dominated
compositions (≥15 Ma) to Quaternary calc-alkaline to alkaline basalt-
dominated compositions (b1.0 Ma). These two events of volcanism
have been interpreted as being derived from partial melting of a
juvenile mantle wedge related to the subduction of Indian oceanic
lithosphere and of differing magma source regions associated with the
rollback of the Indian oceanic lithosphere, respectively. The magmatic
gap in between is proposed to indicate a cessation of oblique oceanic
subduction and a switch to dextral movement along the trench at
ca. 15 Ma.
3.4. Generation of convergence margin magmatism and its implications for
crustal growth

The presence of the continental crust is one of the Earth's unique fea-
tures compared to other planets in our Solar System. However, where
and how the continental crust grows remains the topic of much debate
(cf. Niu et al., 2013 and references therein). For example, continental
crust growth is commonly postulated to occur at subduction zones by
lateral accretion of island arc complexes and oceanic plateaus or by
vertical addition by underplating of mantle-derived basaltic magmas
(cf. Rudnick, 1995), but others argue that continental collision zones
are the primary sites for net continental crust growth (cf. Mo et al.,
2008; Niu and O'Hara, 2009; Niu et al., 2013). The Tibetan Plateau is
an ideal site to verify the relative importance of each mechanism
for continental crust growth as it preserves extensive magmatism in
response to seafloor subduction to continental collision and to
postcollisional collapse (cf. Chung et al., 2005; Niu et al., 2013; Zhu
et al., 2013, 2015).
The Kunlun orogenic belt in the northern Tibetan Plateau is charac-
terized by abundant igneous rocks of Triassic age. However, existing
work is limited without insights into the petrogenesis of the rocks and
their implications for continental crust growth. Y. Zhang et al. (2016b-
in this issue) report the results of host granitoids and mafic magmatic
enclaves (MMEs) synchronously emplaced at ca. 225 Ma from western
Kunlun orogenic belt (Fig. 2). The MMEs were interpreted to represent
cumulate formed from the commonmagma parental to the host granit-
oids. Model calculations suggest that isotopically more than 80% Paleo-
Tethys ocean crust contributed to the source of the host granitoids, thus
representing net continental crustal growth because of the significant
juvenile crustal contribution with compositions resembling the model
bulk continental crust. The authors argue that the hypothesis “continen-
tal collision zones as primary sites for net continental crust growth” ap-
plies to the continental crustal growth in general and to the west
Kunlun orogenic belt in particular.

Hu et al. (2016-in this issue) study the coeval mafic dikes and rhyo-
litic volcanic rocks that are dated at 228−218Ma from the eastern Kun-
lun orogenic belt (Fig. 2). Themafic dikes were interpreted to represent
evolved alkaline basaltic melts derived from metasomatized subconti-
nental lithospheric mantle with crustal contamination. Such mantle-
derived melts underplated and intruded the deep crust as juvenile
crustal materials, whose melting triggered mixing with crustal mate-
rials and mantle-derived mafic melts to produce the felsic volcanic
rocks. It is suggested that decompressionmelting of upwelling astheno-
sphere and inducedmelting of prior metasomatizedmantle lithosphere
(or even overlying crust) in response to postcollisional extension and
related orogenic collapse are conceptually important for understanding
the origin of the juvenile crust and continental crustal accretion through
magmatism in the broad context of orogenesis.

The Bangong−Nujiang suture zone in central Tibet is considered as a
site for lateral crustal growth by accretion of microcontinent (Pan et al.,
2006; Zhu et al., 2013) or oceanic plateau (Zhang et al., 2014). Existing
studies highlight the importance of magma underplating-related verti-
cal crustal growth in the northern Lhasa Terrane (Sui et al., 2013; Zhu
et al., 2011) as previously proposed for the southern Lhasa Terrane
(Mo et al., 2007), but the importance of the vertical crustal growth in
the western Qiangtang Terrane remains unclear. Hao et al. (2016-in
this issue) study the Late Mesozoic intermediate–felsic intrusive rocks
(ca. 150 Ma and 112 Ma) from the western Qiangtang Terrane (Fig. 2).
They suggest that the ca. 150 Ma diorites were most likely associated
with the interaction between sediment diapirs and the mantle wedge
and the ca. 150 Ma granodiorites were probably produced by partial
melting of a thickened ancient mafic lower continental crust, which dif-
fers significantly from the origin of the ca. 112 Ma granodiorite porphy-
ries that were interpreted to be generated by partial melting of a newly
underplated basaltic crust. This difference enables the authors to pro-
pose that the ancient lower crust in the western Qiangtang Terrane
was gradually replaced by mantle-derived juvenile materials from the
Late Jurassic to Early Cretaceous, indicating the presence of vertical
crustal growth by basaltic magma underplating in a continental arc
setting.

3.5. New insights into Cu–Mo mineralization in postcollisional settings

Porphyry Cu–Mo deposits have been recognized to occur in
postcollisional settings over a decade ago (see Hou et al., 2015 and ref-
erences therein). However, the origin of ore-forming metals and sulfur
and the role of former arc magmas in generating such deposits are still
poorly understood. Such problems have been addressed by two papers
in this issue.

The Jiru Cu–Mo deposit of the Gangdese arc in southern Tibet docu-
ments both arc magma-related Eocene (ca. 49 Ma) and postcollisional
Miocene (ca. 16 Ma) porphyry Cu–Mo mineralization. Z.M. Yang et al.
(2016b-in this issue) interpret the significant magmatic differentiation
observed in the Jiru Eocene granitoids (Fig. 2) as a key factor that



5Editorial
resulted in the increase ofwater content of residualmagmaand thus the
formation of the ca. 49 Ma Cu–Mo mineralization. This allows the au-
thors to further propose that sulfide precipitation at the base of lower
crust during the Eocene arc magmatism is not needed in the formation
of the postcollisional Miocene porphyry Cu–Mo deposit, implying that
the origin of the ore metals and S for postcollisional porphyry Cu
deposits is more complex than originally considered.

The Hongshan Cu–Mo deposit of the Yidun arc in southeastern Tibet
is the largest late Cretaceous porphyry–skarn Cu–Mometallogenic sys-
tem in China, which was accompanied with coeval magmatism. L. Q.
Yang et al. (2016a-in this issue) study the origin of the Hongshan gran-
itoid porphyries (Fig. 2) and propose that these rocks were most likely
derived from partial melting of combined juvenile (ca. 215 Ma) arc-
related sources and ancient mafic lower crust as a result of oblique, in-
traplate extension due to asthenospheric upwelling along
lithospheric-scale, transtensional faulting in and across the Yidun arc.
The authors argue that theHongshan Cu–Momineralizationwas related
to high-degree partial melting of the lithosphere that contained metal
accumulations in sulfides during the Triassic seafloor subduction.

4. Summary and future work

Tectonomagmatic events prior to ca. 460Ma that were attributed to
the Proto-Tethyan Ocean subduction and microcontinental amalgam-
ation (G. J. Li et al., 2016a-in this issue) were accompanied by a period
of magmatic lull (460−360 Ma) in the Tethyan Ocean margin of Gond-
wana. This magmatic lull inhibits investigations on the geodynamical
processes associated with the evolution of Tethyan ocean basins during
this time interval. Subsequent histories of the Tethyan Ocean north of
the Lhasa Terrane may have been characterized by broadly coeval sea-
floor subductions toward the Lhasa Terrane (Guo et al., 2016-in this
issue) and toward the Sukhothai–Simao Block in the Indochina margin
(Qian et al., 2016-in this issue), both ofwhichmayhave led to the devel-
opment of back-arc basins during the Late Devonian to Carboniferous.
Similar double-sided seafloor subduction of the Tethyan Ocean north
of the Lhasa Terrane would also occur during the Mesozoic, as evi-
denced by the observations and interpretations of three papers included
in this issue (Zhu et al., 2016-in this issue; Wang et al., 2016-in this
issue; Y. L. Li et al., 2016b-in this issue). Nevertheless, future field-
based interdisciplinary investigations by sedimentologists, metamor-
phic, and igneous petrologists, structural geologists, and geophysicists
on the geology and lithospheric architecture of different suture zones
should be conducted to verify the double-sided subduction hypothesis
proposed for the closing of the Tethyan Ocean basins.

New high-quality data indicate that the Luobusa ophiolite, which
contains podiform chromitites that may have originated from depths
as deep as 410 km (Wu et al., 2016-in this issue), were formed at 134
−128 Ma, coeval with (not older than) other ophiolites along the
Yarlung Zangbo suture zone (C. Zhang et al., 2016a-in this issue). We
propose that the counterclockwise rotation of the Greater Indian Plate
from 130 to 120 Ma, related to its unzipping separation from Australia
to East Antarctica (Coffin et al., 2002), is the possible mechanism that
terminated the active spreading of the Neo-Tethyan ridge and stopped
the formation of new oceanic crust, explaining the absence of ophiolites
younger than 120Mawithin the Yarlung Zangbo suture zone. However,
future work is urgently needed to resolve this “ophiolite puzzle” includ-
ing why the mafic dykes within the Yarlung Zangbo ophiolites were
quasi-synchronously formed at 130−120 Ma.

Several papers in this issue that report newdata on specificmagmat-
ic rocks have discussed the relationships between magmatism and
geodynamical processes (e.g., lithospheric delamination, Pan et al.,
2016-in this issue; Ding et al., 2016-in this issue; slab rollback, Lee
et al., 2016-in this issue; slab breakoff, Huang et al., 2016-in this
issue), “bright spots” in the mid-crust (Weller et al., 2016-in this
issue), crustal growth (Y. Zhang et al., 2016b-in this issue; Hu et al.,
2016-in this issue; Hao et al., 2016-in this issue), and mineralization
(Z. M. Yang et al., 2016b-in this issue; L.Q. Yang et al., 2016a-in this
issue). We address that many important issues remain to be better re-
solved pertaining to the tectonomagmatic evolution of the Greater Ti-
betan Plateau, such as (1) the generation of large granitoid batholiths
with respect to the continental crust growth, (2) deep processes in-
volved in such extensive magmatism and their controls on the surface
uplift of the plateau, and (3) the role of basaltic magma underplating
during preexisting oceanic subduction in generating subsequent giant
metallogenic mineralization.
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