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Abstract The Caledonian-age Qilian Orogenic Belt at the
northern margin of the Greater Tibetan Plateau comprises
abundant granitoids that record the histories of the orogenesis.
We report here our study of these granitoids from two locali-
ties. The Qingchengshan (QCS) pluton, which is situated in
the eastern section of the Central Qilian Block, is dated at
~430–420 Ma. It has high-K calc-alkaline composition with
high SiO2 (> 70 wt%), enrichment in large ion lithophile ele-
ments (LILEs), depletion in high field strength elements
(HFSEs), and varying degrees of negative Sr and Eu anoma-
lies. The granitoids in the Tongwei (TW) area, 150 km east of
the QCS, are complex, the majority of which are dated at
~440 Ma, but there also exist younger, ~230 Ma intrusions
genetically associated with the Qinling Orogeny. The

Paleozoic TW intrusions also have high SiO2, fractionated
REE (rare earth element) patterns, but a negligible Eu anom-
aly. The whole rock Sr-Nd-Hf isotopic compositions suggest
that all these Paleozoic granitoids are consistent with melting-
induced mixing of a two-component source, which is best
interpreted as the combination of last fragments of
subducted/subducting ocean crust with terrigenous sediments.
The mantle isotopic signature of these granitoids (87Sr/86Sri:
0.7038 to 0.7100, εNd(t): −4.8 to −1.3, εHf(t): −0.7 to +4.0)
reflects significant (~70 %) contribution of the ocean crust
derived in no distant past from the mantle at ocean ridges with
an inherited mantle isotopic signature. Partial melting of such
ocean crust plus terrigenous sediments in response to the
ocean closing and continental collision (between the Qilian
and Alashan Blocks) under amphibolite facies conditions is
responsible for the magmatism. Varying extents of fractional
crystallization (±plagioclase, ±amphibole, ±garnet, ±zircon)
of the parental magmas produced the observed QCS and
TW granitoids. We note that sample HTC12–01 in the TW
area shows an A-type or highly fractionated granite signature
characterized by elevated abundances and a flat pattern of
REEs, weak Nb-Ta anomaly, conspicuous negative Sr and
Eu anomalies (Sr/Sr* = 0.09, Eu/Eu* = 0.22), and thus the
high 87Sr/86Sr ratio (0.7851), and moderate εNd(t) (−4.9) and
εHf(t) (−2.0), pointing to the significant mantle contribution.
Compared with the Paleozoic granitoids, the ~230 Ma granit-
oids in the TW area represented by sample JPC12–02 have
higher initial 87Sr/86Sr (0.7073) and lower εNd(t) (−6.2) and
εHf(t) (−4.5) values, offering an ideal opportunity for future
studies on tectonic effects of juxtaposition of younger orogen-
esis on an older orogen.
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Introduction

Granitoids are abundant in all the orogenic belts worldwide.
They are commonly classified as I-, S-, or A-types on the basis
of their source rocks or compositional characteristics (Bonin
2007; Breiter et al. 2014; Champion and Bultitude 2013;
Chappell 1999; Chappell and White 1992; Clemens et al.
2011). Recent studies have shown that the petrogenesis of
granitoids are complex and cannot be described in terms of
the above simple classification. Many granitoids in orogenic
belts show characteristics of source or melt mixing (Gray and
Kemp 2009; Peng et al. 2015; Xia et al. 2014; Yang et al.
2015; Zhu et al. 2015). Hence, classification of the petrogen-
esis of granitoids and using their geochemistry to indicate
tectonic settings must be exercised with caution.

The Qilian Orogenic Belt (QOB) is a subduction-
accretionary orogenic belt, which occupies an important
position at the northern margin of the Greater Tibetan
Plateau. The QOB records the histories of the collisional
orogenesis, but how to correctly read the histories of the
QOB remains controversial (Gehrels et al. 2003a; Huang
et al. 2015; Song et al. 2013, 2014; Wu et al. 2006b,
2010; Xiao et al. 2009; Yang et al. 2015).

In this paper, we focus on the tectonically important
yet poorly studied granitoids in the eastern section of
the Central Qilian Block, located in the conjunction of
the Qilian and Qinling Orogenic Belts, which is thus of
particular tectonic significance. We present age data, ma-
jor and trace element analysis and Sr-Nd-Hf isotope com-
positions to place constraints on the petrogenesis of these
granitoids in the Central Qilian Block in the context of the
tectonic evolution of the QOB.

Geological setting and petrography

The QOB is bounded by the North Qaidam Ultra-High-
Pressure Metamorphic (UHPM) Belt and West-Qinling
Orogenic Belt to the south, by the Alashan Block to the north,
and is offset by the Altyn-Tagh Fault to the northwest (Fig. 1a)
(Pan et al. 2009). Debate remains on the tectonic division of
the QOB. The most recent suggested subdivisions from north
to south are as follows (Fig. 1b): (1) The North Qilian
Orogenic Belt (NQOB), thought to have resulted from the
closure of the North Qilian Ocean, is characterized by arc
volcanic rocks, exhumed high-pressure metamorphic rocks
(Song et al. 2009a; Xia et al. 2012; Xiao et al. 2013; Zhang
et al. 2009), and ophiolite sequences (Hou et al. 2006a; Shi
et al. 2004; Xia and Song 2010; Zhang et al. 2003); (2) The
Central Qilian Block (CQB), considered as an arc-
accretionary system, is dominated by Precambrian basement
overlain by the Paleozoic sedimentary lithologies (Tung et al.
2012; Xiao et al. 2009; Xu et al. 2010a, b), as well as the

synchronous granitoids, granitic gneisses, amphibolites and
minor granulites (Huang et al. 2015; Song et al. 2013,
2014). Recent studies suggest that the Central Qilian Block
and Qaidam Block have close affinities with the Yangtze
Craton (Darby and Gehrels 2006; Gehrels et al. 2003b; Tung
et al. 2012; Xu et al. 2015), but this is debatable (Huang et al.
2015). Furthermore, the subdivision of the South Qilian
Orogenic Belt (dotted line in Fig. 1b) composed of volcanic
rocks and limestones (Xiao et al. 2009) on the basis of limited
study, is also questionable; (3) The North QaidamUHPMBelt
is dominated by granitic and pelitic gneisses with eclogite
lenses. Previous studies indicate that the North Qaidam
UHPM Belt has experienced the processes from continental
deep subduction to subsequent exhumation (Liu et al. 2012;
Song et al. 2009b, 2014; Zhang et al. 2010); (4) The Qaidam
Block (QDB), has a Precambrian meta-crystalline basement
overlain by the Paleozoic-Mesozoic sedimentary strata (Song
et al. 2013, 2014).

The Proterozoic strata in our study area in the eastern section
of the CQBmainly contain theHuangyuanGroup,Maxianshan
Group, XinglongshanGroup andGaolan Group, most of which
are covered by Mesozoic-Cenozoic strata (Guo et al. 1999).
The main intrusive rocks are Qingchengshan (QCS) Early
Pa l eozo i c b io t i t e monzogran i t e s in t rud ing the
Mesoproterozoic Gaolan Group (Fig. 1c) (Chen et al. 2008).
Chen et al. (2008) reported two groups of zircon U-Pb ages for
the QCS pluton (444 ± 3 Ma and 414 ± 3 Ma), and interpreted
the former age as representing the emplacement of the pluton
and the latter age as somewhat ambiguous thermal overprint.
From the QCS pluton eastward, the synchronous Early
Paleozoic calc-alkaline granitoids which intruded the Early
Silurian Huluhe Group are also exposed in the Tongwei (TW)
area spatially coexisting with minor Early Mesozoic plutons
outcropped in the gullies as previously documented (Fig. 1d)
(Zhang et al. 2005b), but they are essentially unstudied.

We have collected fresh samples from theQCS pluton and in
the TWarea (Fig. 2). The QCS pluton is compositionally biotite
monzogranite dominated by plagioclase (30 ~ 40 vol.%), K-
feldspar (30 ~ 40 vol.%), quartz (30 ~ 35 vol.%), biotite
(5 ~ 10 vol.%) and minor accessory minerals such as zircon
and magnetite. The granitoids in the TW area are mainly
monzogranites and biotite granites, composed of K-feldspar
(20 ~ 25 vol.%), plagioclase (35 ~ 40 vol.%) quartz
(30 ~ 35 vol.%), and biotite (< 5 vol.%) with minor accessory
minerals such as titanite and zoisite.

Analytical methods

We selected 4 samples (QCS12–07; QCS12–10; ABYC12–
01; JPC12–02) for zircon U-Pb dating and 9 samples for
whole-rock major and trace element analysis. All of them
were analyzed for Sr-Nd-Hf isotopes.
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Zircon U-Pb isotopic dating

Zircon separation was done using combinedmethods of heavy
liquid and magnetic extraction plus hand-picking under a

binocular in the Langfang Institute of Regional Geological
Survey. The selected zircon grains were mounted in an epoxy
resin disk and polished to expose the interior for imaging and
analysis. All the polished zircon grains were examined using

ab

c d

Fig. 1 a Schematic map showing major tectonic units of the Qilian
Orogenic Belt and its adjacent areas (after Huang et al. 2015). b
Simplified geological map showing the distribution of granitoids of
varying age in the Qilian Orogenic Belt (modified from Ma et al. 2001
and Song et al. 2013). c Geological map of the Qingchengshan (QCS)

pluton and d Geological map of the Tongwei (TW) area showing the
location of granitoid outcrops with sampling sites. The zircon U-Pb age
data in b are from Qian et al. (1998); Su et al. (2004); Wu et al. (2006b,
2010); Yong et al. (2008); Li et al. (2010); Chen et al. (2012); Qi (2012),
and Yang et al. (2015)
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cathodoluminescence (CL) images at China University of
Geosciences in Wuhan (CUGW). Zircon U-Pb dating was
done using LA-ICP-MS at China University of Geosciences
in Beijing (CUGB). Detailed analytical procedures are given
in Song et al. (2010a). The data reduction was done using
Glitter 4.4.1, followed by common Pb correction ac-
cording to Andersen (2002). The weighted mean age
calculations and concordia diagrams were done using
isoplot 3.0 (Ludwig 2003).

Whole rock major and trace element analysis

The whole-rock major and trace element analysis was done at
CUGB, using Leeman Prodigy inductively coupled plasma-
optical emission spectroscopy (ICP-OES) and Agilent-7500a
inductively coupled plasma mass spectrometry (ICP-MS), re-
spectively. The analytical uncertainties are generally less than
1 % for most major elements with the exception of TiO2

(~1.5 %) and P2O5 (~2 %). The loss on ignition was measured

a b

c d

e f

Fig. 2 a Field photograph
showing garnet crystals in a
pegmatite vein in the
Qingchengshan (QCS) pluton. b
Representative photomicrograph
showing the mineral assemblages
of the Qingchengshan pluton
(QCS12–10). c, d, e and f are
photomicrographs of other
samples (ABYC12–01, JPC12–
02, CCC12–01, HTC12–01) in
the Tongwei (TW) area,
respectively. Mineral
abbreviations: Bt-biotite, Pl-
plagioclase, Q-quartz, Ttn-
titanite, Mc-microcline, Zo-
zoisite

a b

c d

Fig. 3 Cathodoluminescence
(CL) images of representative
zircons for the Qingchengshan
(QCS) pluton (QCS12–07,
QCS12–10) and Tongwei (TW)
granitoids (ABYC12–01, JPC12–
02). Small solid circles are spots
for U-Pb isotope analysis
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Table 1 Zircon LA-ICP-MS U-Pb isotopic data of the Qingchengshan (QCS) pluton (QCS12–07, QCS12–10) and Tongwei (TW) granitoids
(ABYC12–01, JPC12–02)

Grain-
Spot

Th
(ppm)

U
(ppm)

Th/
U

Ratios Age (Ma)

207Pb/206Pb ± 1 207Pb/235U ± 1 206Pb/238U ± 1 207Pb/206Pb ± 1 207Pb/235U ± 1 206Pb/238U ± 1

QCS12–07

1 345 452 0.76 0.0552 0.0027 0.5134 0.0238 0.0675 0.0010 419 111 421 16 421 6

2 297 606 0.49 0.0545 0.0010 0.5067 0.0096 0.0674 0.0009 393 21 416 6 420 5

3 112 247 0.45 0.0545 0.0015 0.5058 0.0137 0.0673 0.0010 393 36 416 9 420 6

4 110 624 0.18 0.0556 0.0010 0.5145 0.0101 0.0671 0.0009 438 22 421 7 418 5

5 130 272 0.48 0.0558 0.0013 0.5176 0.0126 0.0673 0.0010 445 30 424 8 420 6

6 148 260 0.57 0.0553 0.0015 0.5133 0.0145 0.0673 0.0010 424 38 421 10 420 6

7 124 283 0.44 0.0574 0.0015 0.5342 0.0139 0.0675 0.0010 507 33 435 9 421 6

8 125 361 0.35 0.0552 0.0012 0.5140 0.0115 0.0675 0.0009 422 26 421 8 421 6

9 138 436 0.32 0.0555 0.0012 0.5141 0.0114 0.0672 0.0009 430 26 421 8 419 6

10 332 821 0.40 0.0546 0.0009 0.5071 0.0092 0.0673 0.0009 397 19 416 6 420 5

11 347 540 0.64 0.0551 0.0011 0.5123 0.0110 0.0674 0.0009 416 25 420 7 421 6

12 82.2 168 0.49 0.0561 0.0020 0.5219 0.0183 0.0674 0.0010 458 51 426 12 421 6

13 110 415 0.26 0.0558 0.0012 0.5193 0.0115 0.0675 0.0009 446 26 425 8 421 6

14 126 229 0.55 0.0562 0.0015 0.5217 0.0143 0.0673 0.0010 460 36 426 10 420 6

15 159 340 0.47 0.0541 0.0011 0.5015 0.0108 0.0673 0.0009 374 25 413 7 420 6

16 208 284 0.73 0.0553 0.0013 0.5134 0.0127 0.0674 0.0010 422 31 421 9 420 6

17 114 581 0.20 0.0556 0.0011 0.5165 0.0106 0.0674 0.0009 436 23 423 7 420 6

18 106 178 0.60 0.0558 0.0018 0.5199 0.0166 0.0676 0.0010 445 44 425 11 421 6

19 166 252 0.66 0.0553 0.0015 0.5136 0.0145 0.0673 0.0010 425 37 421 10 420 6

20 139 314 0.44 0.0552 0.0021 0.5136 0.0194 0.0674 0.0011 422 55 421 13 421 7

21 270 351 0.77 0.0548 0.0012 0.5110 0.0118 0.0676 0.0010 406 27 419 8 422 6

22 217 380 0.57 0.0547 0.0012 0.5069 0.0119 0.0672 0.0010 400 28 416 8 419 6

QCS12–10

1 161 265 0.61 0.0552 0.0015 0.5251 0.0147 0.0690 0.0010 420 36 429 10 430 6

2 168 314 0.53 0.0565 0.0028 0.5329 0.0251 0.0684 0.0011 472 113 434 17 427 6

3 162 284 0.57 0.0555 0.0014 0.5286 0.0141 0.0691 0.0010 431 34 431 9 431 6

4 126 221 0.57 0.0553 0.0019 0.5273 0.0181 0.0692 0.0011 424 49 430 12 431 6

5 196 369 0.53 0.0556 0.0019 0.5265 0.0179 0.0687 0.0011 436 48 429 12 428 7

6 107 193 0.56 0.0554 0.0020 0.5289 0.0188 0.0692 0.0012 429 50 431 13 431 7

7 146 356 0.41 0.0560 0.0016 0.5339 0.0155 0.0691 0.0010 454 38 434 10 431 6

8 218 282 0.77 0.0556 0.0019 0.5298 0.0178 0.0691 0.0011 437 46 432 12 431 7

9 178 284 0.63 0.0555 0.0016 0.5272 0.0158 0.0689 0.0011 432 40 430 10 430 6

ABYC12–01

1 156 190 0.82 0.0562 0.0016 0.5482 0.0156 0.0707 0.0011 460 37 444 10 441 6

2 244 334 0.73 0.0565 0.0014 0.5508 0.0141 0.0707 0.0010 471 31 446 9 441 6

3 200 296 0.68 0.0557 0.0014 0.5419 0.0145 0.0706 0.0010 440 34 440 10 440 6

4 278 215 1.29 0.0563 0.0017 0.5476 0.0170 0.0705 0.0011 465 42 443 11 439 7

5 278 334 0.83 0.0555 0.0014 0.5401 0.0139 0.0705 0.0010 434 32 439 9 439 6

6 71.8 109 0.66 0.0555 0.0026 0.5416 0.0254 0.0708 0.0012 432 75 439 17 441 7

7 231 227 1.02 0.0556 0.0016 0.5416 0.0158 0.0707 0.0011 435 38 439 10 440 7

8 303 255 1.19 0.0550 0.0016 0.5352 0.0155 0.0706 0.0011 411 38 435 10 440 6

9 243 422 0.58 0.0554 0.0012 0.5412 0.0126 0.0708 0.0010 430 27 439 8 441 6

10 198 285 0.70 0.0563 0.0014 0.5475 0.0140 0.0705 0.0011 464 31 443 9 439 6

11 234 273 0.86 0.0557 0.0016 0.5436 0.0156 0.0708 0.0011 440 37 441 10 441 6

12 219 344 0.64 0.0554 0.0013 0.5391 0.0130 0.0705 0.0010 430 29 438 9 439 6
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by placing 1 g of sample powder in the furnace at 1000 °C for
several hours before cooled in a desiccator and reweighted.
The Analytical details are given in Song et al. (2010b).

Sr-Nd-Hf isotope analysis

The Sr-Nd-Hf isotope analysis was done at Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences
(GIG-CAS), following the methods by Li et al. (2006). The
rock powders were dissolved with HF-HNO3 mixtures before
Sr, Nd and Hf separation by small Sr Spec resin columns and
Hf-Nd cation exchange resin columns to obtain purified Sr,

Nd and Hf fractions. The Sr isotope analysis was done using a
Neptune Plus multi-collector inductively coupled plasma
mass spectrometer (MC-ICP-MS), and Nd-Hf isotope analy-
ses were done using a Micromass IsoProbe MC-ICP-MS. All
measured 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf ratios were
normalized to 86Sr/88Sr = 0.1194, 146Nd/144Nd = 0.7219 and
179Hf/177Hf = 0.7325, respectively. During the course of this
s t u d y , a n a l y s e s o f NB S 9 8 7 s t a n d a r d g a v e
87Sr/86Sr = 0.710283 ± 0.000005 (n = 13, 2σ). The
143Nd/144Nd ratios of the standard BHVO-2 and JB-3 were
0.512977 ± 0.000014 (n = 8, 2σ) and 0.513053 ± 0.000018
(n = 13, 2σ), respectively. And the mean 176Hf/177Hf ratios for

Table 1 (continued)

Grain-
Spot

Th
(ppm)

U
(ppm)

Th/
U

Ratios Age (Ma)

207Pb/206Pb ± 1 207Pb/235U ± 1 206Pb/238U ± 1 207Pb/206Pb ± 1 207Pb/235U ± 1 206Pb/238U ± 1

13 126 127 1.00 0.0565 0.0022 0.5519 0.0214 0.0709 0.0011 471 57 446 14 441 7

14 828 726 1.14 0.0587 0.0012 0.5696 0.0121 0.0703 0.0010 557 23 458 8 438 6

15 132 147 0.90 0.0557 0.0020 0.5438 0.0198 0.0708 0.0011 441 53 441 13 441 7

16 119 234 0.51 0.0584 0.0016 0.5843 0.0161 0.0725 0.0011 546 34 467 10 451 7

17 125 297 0.42 0.0553 0.0012 0.5392 0.0124 0.0707 0.0010 424 27 438 8 440 6

18 313 480 0.65 0.0564 0.0011 0.5495 0.0116 0.0707 0.0010 468 23 445 8 440 6

19 547 658 0.83 0.0552 0.0011 0.5385 0.0112 0.0707 0.0010 422 23 437 7 440 6

20 385 493 0.78 0.0553 0.0011 0.5407 0.0117 0.0709 0.0010 426 25 439 8 441 6

21 192 185 1.04 0.0555 0.0016 0.5411 0.0158 0.0708 0.0011 430 38 439 10 441 7

22 448 271 1.65 0.0600 0.0015 0.5827 0.0147 0.0705 0.0011 602 30 466 9 439 6

23 64.5 115 0.56 0.0554 0.0022 0.5413 0.0215 0.0708 0.0011 430 61 439 14 441 7

24 84.0 136 0.62 0.0537 0.0020 0.5249 0.0197 0.0709 0.0011 359 56 428 13 441 7

JPC12–02

1 111 281 0.40 0.0503 0.0020 0.2528 0.0099 0.0364 0.0006 211 61 229 8 231 4

2 68.6 124 0.55 0.0513 0.0031 0.2576 0.0153 0.0364 0.0006 254 106 233 12 231 4

3 328 239 1.37 0.0509 0.0017 0.2561 0.0087 0.0365 0.0006 235 50 232 7 231 3

4 310 498 0.62 0.0507 0.0015 0.2542 0.0075 0.0363 0.0006 229 41 230 6 230 3

5 380 256 1.49 0.0508 0.0023 0.2551 0.0116 0.0365 0.0006 230 75 231 9 231 4

6 154 226 0.68 0.0511 0.0024 0.2567 0.0118 0.0364 0.0006 245 76 232 10 231 4

7 444 261 1.70 0.0508 0.0019 0.2554 0.0096 0.0365 0.0006 232 59 231 8 231 3

8 286 185 1.55 0.0504 0.0028 0.2517 0.0138 0.0362 0.0006 214 96 228 11 229 4

9 327 295 1.11 0.0507 0.0022 0.2518 0.0107 0.0360 0.0006 228 70 228 9 228 3

10 97.3 352 0.28 0.0510 0.0013 0.2561 0.0066 0.0365 0.0005 239 33 232 5 231 3

11 279 207 1.35 0.0509 0.0022 0.2563 0.0111 0.0366 0.0006 234 71 232 9 231 4

12 178 311 0.57 0.0507 0.0016 0.2548 0.0081 0.0364 0.0005 228 46 230 7 231 3

13 313 541 0.58 0.0528 0.0031 0.2560 0.0142 0.0351 0.0006 322 134 231 11 223 3

14 374 930 0.40 0.0508 0.0011 0.2558 0.0058 0.0365 0.0005 230 28 231 5 231 3

15 575 303 1.90 0.0506 0.0019 0.2547 0.0095 0.0365 0.0006 224 57 230 8 231 4

16 103 80 1.28 0.0506 0.0046 0.2516 0.0224 0.0361 0.0008 221 159 228 18 229 5

17 123 118 1.04 0.0512 0.0038 0.2514 0.0187 0.0356 0.0007 252 135 228 15 225 4

18 568 535 1.06 0.0527 0.0014 0.2651 0.0074 0.0365 0.0005 316 38 239 6 231 3

19 74.5 240 0.31 0.0511 0.0023 0.2565 0.0116 0.0364 0.0006 244 73 232 9 231 4
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BHVO-2 and JB-3 were 0.283099 ± 0.000015 (n = 13, 2σ)
and 0.283216 ± 0.000015 (n = 6, 2σ), respectively. The
values of rock standards BHVO-2 and JB-3 are within
the analytical error of the recommended values
(GeoREM, http://georem.mpch-mainz.gwdg.de/).

Analytical data

Zircon U-Pb geochronology

Representative zircon Cathodoluminescence (CL) images
for the QCS pluton and TW granitoids are shown in
Fig. 3. LA-ICP-MS zircon U-Pb data are given in
Table 1 and presented in Fig. 4.

Zircons in sample QCS12–07 (from the QCS pluton)
are euhedral and elongated crystals with oscillatory-
zoning of magmatic origin (Fig. 3a), having variably
high Th/U (0.18–0.77). Twenty two analyses yield a
weighted mean 206Pb/238U age of 420.2 ± 2.4 Ma
(MSWD =0.024) (Fig. 4a). Nine analyses of zircons in

sample QCS12–10 (from the QCS pluton) with high Th/
U (0.41–0.77) give a weighted mean 206Pb/238U age of
430.0 ± 4.1 Ma (MSWD =0.057) (Fig. 4b).

Zircons in sample ABYC12–01 (from the TW granitoids)
show variable Th/U (0.42–1.65), and twenty four analyses of
zircons give a weighted mean 206Pb/238U age of
440.5 ± 2.5 Ma (MSWD =0.12) (Fig. 4c). Nineteen analyses
of zircons in sample JPC12–02 (from the TW granitodis)
show varying Th/U values (0.31–1.90) and oscillatory zoning
(Fig. 3d), yielding a weighted mean 206Pb/238U age of
229.8 ± 1.5 Ma (MSWD =0.48) (Fig. 4d).

Whole-rock major and trace element data

Whole-rockmajor and trace element data of 9 samples (5 QCS
samples, 4 TW samples) are given in Table 2.

All the QCS samples show high SiO2 (70.6–75.7 wt%) and
relatively high alkalis (K2O + Na2O = 6.4–7.8 wt%). These
data plot in the granite field in the TAS diagram (Fig. 5a).
Most of the samples display high-K calc-alkaline (Fig. 5b)
and metaluminous to peraluminous (A/CNK = 0.99–1.12)
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Table 2 Whole-rock major and trace element data of the Qingchengshan (QCS) pluton and Tongwei (TW) granitoids

Sample QCS pluton TW granitoids

QCS12–03 QCS12–06 QCS12–08 QCS12–10 QCS12–11 JPC12–02 CCC12–01 ABYC12–01 HTC12–01

SiO2 73.8 70.6 72.5 70.8 75.7 71.8 71.6 70.8 74.7

TiO2 0.14 0.26 0.25 0.35 0.07 0.31 0.26 0.32 0.21

Al2O3 13.8 15.4 14.9 14.7 14.3 14.7 14.6 14.9 13.0

TFe2O3
a 1.19 2.02 2.02 2.46 0.49 2.04 1.73 2.21 1.25

MnO 0.06 0.04 0.03 0.03 0.01 0.03 0.03 0.03 0.01

MgO 0.24 0.62 0.73 0.76 0.16 0.56 0.61 0.74 0.29

CaO 1.64 2.91 2.36 1.92 1.73 1.88 1.71 3.02 0.46

Na2O 3.38 4.31 3.76 3.06 3.37 3.87 3.97 4.19 3.05

K2O 4.42 3.01 2.62 4.54 3.83 4.30 4.29 2.93 5.36

P2O5 0.05 0.11 0.10 0.07 0.02 0.09 0.08 0.08 0.09

LOI 0.58 0.60 0.63 0.56 0.42 0.60 0.59 0.56 0.79

Total 99.2 99.9 99.9 99.2 100.0 100.2 99.5 99.8 99.1

A/NK b 1.33 1.49 1.65 1.48 1.47 1.33 1.31 1.49 1.20

A/NKC c 1.03 0.99 1.12 1.10 1.11 1.01 1.02 0.96 1.11

K2O/Na2O 1.31 0.70 0.70 1.48 1.35 1.11 1.08 0.70 1.76

Li 37.5 27.2 50.1 26.9 12.2 35.8 50.1 21.2 10.7

Sc 3.7 3.4 4.4 4.0 1.3 3.1 2.9 2.9 5.4

V 7.5 17.0 23.1 23.2 4.5 22.0 24.7 36.1 20.3

Cr 3.3 3.8 3.8 9.7 22.7 9.4 9.9 8.2 8.2

Co 0.6 2.4 2.9 3.6 0.8 2.5 2.6 3.8 1.1

Ni 0.8 1.7 2.8 4.5 10.8 4.6 5.1 4.4 1.7

Cu 2.3 1.1 5.5 1.6 0.8 5.3 3.6 2.2 57.0

Zn 29.0 35.7 49.7 46.8 14.2 40.1 31.5 42.1 14.2

Ga 18.1 18.4 19.7 18.9 16.5 19.8 20.6 21.8 18.9

Rb 181 105 162 116 129 165 210 105 344

Sr 101 337 342 379 317 534 599 907 63

Y 15.2 6.4 10.8 8.9 8.7 6.6 6.5 5.2 47.4

Zr 124 126 381 156 49 200 135 171 128

Nb 14.7 11.8 16.4 15.1 5.1 10.4 9.7 4.4 39.3

Cs 2.9 3.6 5.0 4.5 1.7 3.0 12.5 1.7 10.9

Ba 545 632 1555 739 758 1452 1209 1879 206

La 37.5 27.9 103.8 31.5 21.9 56.3 33.1 50.7 29.4

Ce 74.5 50.7 191.8 54.0 41.2 97.6 59.7 93.6 61.8

Pr 7.41 4.52 17.89 5.21 4.05 8.97 6.08 8.28 7.01

Nd 24.8 14.7 58.8 17.1 13.7 28.6 20.6 26.2 26.1

Sm 4.42 2.50 8.19 2.81 2.44 3.90 3.12 3.32 6.19

Eu 0.53 0.66 1.06 0.65 0.73 0.99 0.80 0.95 0.44

Gd 3.54 2.02 5.63 2.39 2.07 2.75 2.24 2.15 6.13

Tb 0.47 0.25 0.54 0.33 0.29 0.29 0.25 0.21 1.06

Dy 2.58 1.23 2.30 1.73 1.61 1.32 1.19 0.97 6.92

Ho 0.53 0.21 0.39 0.31 0.31 0.23 0.21 0.18 1.49

Er 1.71 0.58 1.06 0.84 0.82 0.63 0.60 0.51 4.79

Tm 0.28 0.08 0.13 0.11 0.10 0.08 0.08 0.07 0.74

Yb 1.97 0.48 0.77 0.65 0.61 0.50 0.53 0.50 5.26

Lu 0.29 0.07 0.12 0.09 0.09 0.08 0.08 0.08 0.78

Hf 3.24 3.22 8.78 3.74 1.39 4.52 3.43 3.94 3.89

Ta 0.93 0.96 0.89 0.98 0.34 0.66 0.60 0.27 2.95

30 Li J. et al.



characteristics (Fig. 5c). In SiO2 variation diagrams (Fig. 6),
most oxides do not exhibit well defined trends.

Trace elements of the QCS samples show enrichment
of LILEs (Rb, K, Ba) and relative depletion of HFSEs
(Nb, Ta, Ti, P) (Fig. 7a) with varying Nb/Ta ratios
(12.3–18.4). Chondrite-normalized REE (rare earth ele-
ment) patterns of these samples show varying enrich-
ment of LREEs (light rare earth elements) ([La/
Yb]N = 13.6–96.3) and variably fractionated HREEs
(heavy rare earth elements) ([Dy/Yb]N = 0.88–1.99)
(Fig. 7c). The samples also display variable negative
Sr and Eu anomalies (Sr/Sr* = 0.14–0.82, Eu/
Eu* = 0.40–0.96).

The ~440 Ma TW samples have high SiO2 (70.8–
74.7 wt%), and variable K2O/Na2O (0.70–1.76), plotting
in the granite field in the TAS diagram (Fig. 5a) and
displaying calc-alkaline to high-K calc-alkaline charac-
teristics in the K2O - SiO2 diagram (Fig. 5b). They have
relatively high A/CNK values (0.96–1.11) (Fig. 5c).
Note that sample HTC12–01 has the highest SiO2

(74.7 wt%) and lowest CaO (0.46 wt%). The ~230 Ma
sample (JPC12–02) also shows high SiO2 (71.8 wt%),
h igh-K ca lc -a lka l ine (K2O/Na2O = 1.11) and
metaluminous (A/CNK = 1.01) characteristics.

In model ocean crust normalized trace element diagram,
the ~440 Ma TW samples show enrichment of LILEs (Rb,
Ba, K) and depletion of HFSEs (Nb, Ta, Ti, P) (Fig. 7b).
Most of these samples show elevated LREEs/HREEs ratios
([La/Yb]N = 44.7–73.2) without significant Sr and Eu anom-
alies (Sr/Sr* = 1.03–1.18, Eu/Eu* = 0.88–1.02), except for
sample HTC12–01 which shows a flat HREE pattern, lower
LREEs/HREEs ratio ([La/Yb]N = 4.0, [Dy/Yb]N = 0.88) and
pronounced negative Sr and Eu anomalies (Sr/Sr* = 0.09, Eu/
Eu* = 0.22). The ~230 Ma TW sample shows similar

characteristics of trace element systematics with the
~440Ma samples ([La/Yb]N = 80.7, Eu/Eu* = 0.88) (Fig. 7d).

Sr-Nd-Hf isotopes

The whole-rock Sr-Nd-Hf isotope data are given in Table 3.
The QCS samples show variable initial 87Sr/86Sr

(0.7038 to 0.7100, calculated at 430 Ma), moderate εNd(t)
(−4.8 to −1.3) and relatively high εHf(t) (−0.7 to +4.0)
(Fig. 11). The mantle isotopic signature of the QCS sam-
ples reflects significant contribution to juvenile crustal
growth. The ~440 Ma TW samples show relatively low
initial 87Sr/86Sr (0.7038–0.7053), and high εNd(t) (−2.1 to
−3.1) and εHf(t) values (+1.9 to +2.2) (Fig. 11), except for
sample HTC12–01 with extremely high 87Sr/86Sr (0.7851,
see below), while the ~230 Ma sample shows modest ini-
tial 87Sr/86Sr (0.7073), low εNd(t) (−6.2), and εHf(t) (−4.5).

Discussion

Petrogenesis of the QCS pluton

S-type granites or Adakite/Adakitic rocks?

A previous study (Chen et al. 2008) suggested that the QCS
pluton is peraluminous S-type granites derived from partial
melting of meta-greywackes in middle-upper crust conditions.
However, there are no Al2O3-rich phases (e.g., cordierite,
muscovite, garnet etc.) as would be expected for S-type gran-
ites. Garnet only appears as a vein mineral (Fig. 2a). As is the
general case, S-type granites commonly contain enclaves
representing restite of crustal melting (Chappell and White
1991; Chappell and Wyborn 2012), but such enclaves are

Table 2 (continued)

Sample QCS pluton TW granitoids

QCS12–03 QCS12–06 QCS12–08 QCS12–10 QCS12–11 JPC12–02 CCC12–01 ABYC12–01 HTC12–01

Pb 26.9 30.1 32.7 25.9 32.8 31.2 38.4 19.4 41.8

Th 19.9 14.8 33.1 11.9 9.8 19.6 17.7 14.9 38.9

U 2.22 1.66 2.60 1.79 1.22 2.14 1.84 1.39 4.49

Eu/Eu* d 0.40 0.87 0.45 0.75 0.96 0.88 0.88 1.02 0.22

Sr/Sr* d 0.14 0.79 0.20 0.77 0.82 0.64 1.03 1.18 0.09

(La/Yb)N
e 13.6 42.0 96.3 35.0 25.8 80.7 44.7 73.2 4.0

(Dy/Yb)N
e 0.88 1.72 1.99 1.80 1.77 1.77 1.50 1.31 0.88

a Fe2O3 is total Fe expressed as Fe3+

bA/NK = molar Al2O3/(Na2O + K2O)
c A/NKC = molar Al2O3/(Na2O + K2O + CaO)
d Eu/Eu* = 2 x EuN/(SmN + GdN), Sr/Sr* = 2 x SrN/(PrN + NdN)
e Subscript N stands for normalized values against chondrite
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absent in the QCS pluton. In addition, the metaluminous to
peraluminous characteristics (A/CNK = 0.99–1.12) and the
roughly negative P2O5 - SiO2 correlation (Fig. 6) which is
used to distinguish I-type from S-type granites due to the high
apatite solubility in peraluminous melt (Chappell 1999), sug-
gest that the QCS pluton is not S-type granites derived from
meta-sedimentary protolith.

Geochemically, although the QCS pluton has high Sr/Y
(6.6–53.1) and La/Yb (19.0–134.2) ratios, it could be mistak-
enly interpreted as adakite or adakitic rocks. In Sr/Yvs. Yand
La/Yb vs. Yb diagrams (Fig. 10a, b) which are commonly
used to distinguish adakite from normal island arc rocks, our
data and the data from the literature (Chen et al. 2008) plot
cross the field of adakite and of normal arc andesite, dacite,
and rhyolite (ADR). However, the QCS pluton has low Al2O3

(< 15 %), modest Sr (< 400 ppm) and low Y (< 20 ppm) and
Yb (< 2 ppm). They are different from adakite and adakitic
rocks by definition (e.g., high Sr > 400 ppm; Castillo 2012).
Hence, the QCS pluton also cannot be defined as adakite or
adakitic rocks.

High silica granites and high Sr/Y, La/Yb ratios

Note that the QCS pluton has high silica content (> 70 wt%)
and the major element oxides (our data and literature data) do
not show obvious evolution trend with SiO2 (Fig. 6). It is
likely that these high silica granites represent residual liquids
with a felsic magmatic crystal mush (Lee andMorton 2015) at
the late stage of magma evolution. As mentioned above, the
QCS pluton shows high Sr/Y (6.6–53.1) and La/Yb (19.0–
134.2) ratios. Additionally, the QCS pluton shows obvious
enrichment of LREEs and depletion of HREEs relative to
model bulk continental crust composition (BCC, Rudnick
and Gao 2003) (Fig. 7c). It is thus important to evaluate the
effect of fractional crystallization of relevant minerals phases
(e.g., plagioclase, amphibole, zircon, garnet).

Firstly, fractional crystallization of plagioclase could play
an important role in magma evolution as evidenced by de-
creasing Sr with increasing SiO2 (Fig. 8a) and increasing
Rb/Sr with decreasing Sr (Fig. 8b). Fractional crystallization
of amphibole could cause high Sr/Yand La/Yb ratios, whereas
the evolution trend with amphibole fractionation only in our
simulation do not fit well with the data in Sr/Y vs. Y space
(Fig. 10a, line2). Besides, amphibole fractionation will cause
the residual melt to develop a concave HREE pattern (Moyen
2009), which is not observed (Fig. 7c). Crystallization of zir-
con is expected to deplete HREEs in the melt because of
strong compatibility of HREEs in zircons (Thomas et al.
2002). Figure 9a shows that Zr/Sm indeed decreases with
increasing SiO2, which is consistent with zircon crystalliza-
tion. However, Fig. 9b shows that zircon crystallization can-
not explain the HREE depletion as approximated with Y. The
relatively varying HREE fractionation (e.g., [Dy/
Yb]N = 0.88–1.99) may be caused by garnet, which is highly
compatible for the progressively heavier HREEs. Generally,
garnet is regarded as a characteristic mineral of S-type gran-
ites, mainly formed by peritectic reaction during partial melt-
ing of pelites and psammites or other meta-sedimentary rocks
(Sylvester 1998; Taylor and Stevens 2010). But in this study,
garnet only appears as liquidus phase in veins (Fig. 2a) of late
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stage of magma evolution (Dahlquist et al. 2007; René and
Stelling 2007). We thus suggest that the primitive magmas
parental to the QCS pluton may have experienced fractional
crystallization of garnet, resulting in HREE depletion.

With all the above considered, we carried out calculations
shown in Fig. 10a, b, where the high Sr/Y and La/Yb ratios
can be explained by fractional crystallization of garnet, pla-
gioclase and amphibole.

Constraints on the source

The QCS pluton has varying initial 87Sr/86Sr (0.7038 to
0.7100) and moderate εNd(t) (−4.8 to −1.3) showing scattered
but significant inverse trend falling between S- and I-type
granites in comparison with the classic Lachalan Fold Belt
(LFB) granitoids (Fig. 11a; McCulloch and Chappell 1982),
which is consistent with mixing of sources with varying com-
positions (Niu and Batiza 1997). Such isotopic compositions
as well as high Sr/Y, La/Yb ratios may be generated by several
processes, including (a) classic model of Bslab melting^ under
eclogite facies (Defant and Drummond 1990; Kelemen et al.
2003; Yogodzinski and Kelemen 1998); (b) lower crustal or-
igin (e.g., partial melting of thicken or delaminated lower
crust) (Chung et al. 2003; Wang et al. 2005, 2007, 2012); (c)
partial melting of remaining part of the subducted ocean crust

with terrigenous sediments under amphibolite facies condi-
tions (Mo et al. 2008; Niu 2005; Niu et al. 2013).

The traditional model of partial melting of subducted
ocean crust is suitable for explaining the petrogenesis of
adakite having typical geochemical characteristics (e.g.,
high Sr > 400 ppm, Al2O3 > 15 wt%), but cannot ac-
count for the QCS pluton. Lower crustal origin is also
implausible because the εNd(t) (−4.8 to −1.3) of QCS
pluton is far above the Nd isotope compositions of ma-
ture lower crust. The isotopic compositions with
εNd(t) = −4.8 to −1.3 and εHf(t) = −0.7 to +4.0 of
QCS pluton indicate significant mantle contribution.
Melting of delaminated lower crust in the mantle con-
ditions can be precluded because (1) the QCS pluton
has too low MgO (0.16–0.76 wt%) and thus records
no interaction between felsic magmas and mantle peri-
dotite and (2) the mechanism of lower crust delamina-
tion is still unclear (Niu et al. 2013).

According to the closure time of the North Qilian Ocean
(~445 Ma) followed by continental collision (~435–420 Ma)
(Song et al. 2013), the ~430 Ma QCS pluton located south of
the NQOB is most likely linked with the magmatic response
to the collision between the Central Qilian Block and Alashan
Block. Partial melting of remaining part of the subducted
ocean crust with terrigenous sediments under amphibolite fa-
cies conditions offers a better explanation (Mo et al. 2008; Niu
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2005; Niu et al. 2013). In this model, the retarded underthrust-
ing rate of subducted slab upon collision causes high T/P
conditions, making the highly altered ocean crust to melt
when intersecting the hydrous basaltic solidus under amphib-
olite facies conditions and generate andesitic magmas (Mo
et al. 2008; Niu et al. 2013).

In our study, we infer that the QCS pluton is the product of
the varying extents of fractional crystallization (plagioclase +
amphibole + garnet plus minor phase like zircon and other
accessary phases) from parental magmas formed as elaborated
above. The Sr-Nd-Hf isotopes are also consistent with the
modeling (Fig. 11a, b). We use the data of pillow basalts from
the North Qilian ophiolite suites representing the remaining
part of the ocean crust and of Shaliuhe Gneisses representing
terrigenous sediments as the two end-members. The calcula-
tion shows that isotopically mantle contribution from ocean
crust can reach up to 70 % and is in accord with the melting-
induced mixing of two-component source. In addition, we
choose the model BCC composition as representing the prim-
itive andesitic magmas parental to the high silicic QCS pluton
to evaluate the magma evolution in terms of fractional crys-
tallization. The results show that the primitive magmas with
~50 % fractional crystallization (Fig. 7c) can produce the sig-
nature of the QCS pluton.

Petrogenesis of the TW granitoids

Our zircon U-Pb age data show that there are two mag-
ma t i c emp l a c emen t e v e n t s i n t h e TW a r e a
(440.5 ± 2.5 Ma and 229.8 ± 1.5 Ma). It is noteworthy
that sample HTC12–01 shows relatively high alkalis
(K2O + Na2O = 8.41 wt%), low CaO (0.46 wt%), high
Nb (39.3 ppm) and Ta (2.95 ppm), and a flat REE
pattern with strong negative Sr and Eu anomalies (Sr/
Sr* = 0.09, Eu/Eu* = 0.22) (Fig. 7b, d), indicating the
possibility of A-type or highly fractionated granites.
Using the conventional discrimination indexes for A-
type, such as 10,000*Ga/Al, Zr + Nb + Ce + Y et al.
(Eby 1992; Whalen et al. 1987), it is hard to distinguish
the type of sample HTC12–01 because of only one
sample. As is known, the A-type or highly fractionated
granites with high LILE and HFSE abundances as well
as pronounced negative anomalies (Sr, Eu, Ba, Ti) are
largely due to protracted fractional crystallization (e.g.,
plagioclase, ilmenite) (Anderson et al. 2003; Smith et al.
1999). Isotopically, sample HTC12–01 show extremely
high 87Sr/86Sr ratio (0.7851), which is consistent with
elevated radiogenic ingrowth of 87Sr because of the de-
pletion of Sr (63 ppm) and high Rb/Sr ratio (5.43) (Shao
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et al. 2015). The moderate εNd(t) (−4.9) and εHf(t) (−2.0)
may point to the significant mantle contribution.
However, further study is warranted.

The other ~440 Ma TW granitoids show high SiO2

(70.8–71.6 wt%), relatively high Sr (599–907 ppm), low
Y (5.2–6.5 ppm), low Yb (0.50–0.53), high Sr/Y (92.3–
174.4) and La/Yb (62.3–102.1) ratios, negligible Eu
anomaly (Eu/Eu* = 0.88–1.02), and relative HREE frac-
tionation ((Dy/Yb)N = 1.31–1.50). The isotopic compo-
sitions show relatively low initial 87Sr/86Sr (0.7038 to
0.7053), and high εNd(t) (−2.1 to −3.1) and εHf(t) values
(+1.9 to +2.2) (Fig. 11a, b), suggesting mantle contri-
bution to the ~440 Ma TW granitoids through processes
elaborated above for the QCS pluton plus amphibole +
garnet-dominated fractionation to explain their adakitic
features (Fig. 7d; Fig. 10c, d).

As for the ~230 Ma TW granitoids, sample JPC12–02 has
high SiO2 (71.8 wt%), Sr (534 ppm), Sr/Y (80.7) and La/Yb
(112.5) values, low Y (6.6 ppm) and Yb (0.50 ppm) contents
(Fig. 10c, d), and also shares some geochemical similarities
with the ~440 Ma TW granitoids, except for the relatively
higher initial 87Sr/86Sr (0.7073) and lower εNd(t) (−6.2) and
εHf(t) (−4.5) values, implying more crust material involve-
ment in the petrogenesis, which is genetically associated with
the Qinling Orogeny (see below).

Tectonic significance of the Qilian Orogenic Belt

There has been a long standing debate on the tectonic evolu-
tion of the Qilian Orogenic Belt. Previous studies focus more
on the NQOB concerning the continental breakup, seafloor
spreading, seafloor subduction and continental collision. The
North Qilian Ocean was commonly supposed to open at
~750 Ma as a consequence of breakup of Rodinia superconti-
nent (Song et al. 2013; Tseng et al. 2006), then subduction
occurred some ~200 Myrs later due to the formation of suffi-
ciently cold and thickened lithosphere (Niu et al. 2003b).

In contrast, Huang et al. (2015) suggested that an Early
Paleozoic ocean basin (i.e., the Qilian Ocean) could exist be-
tween the Qaidam Block and Central Qilian Block in the
Neoproterozoic, whereas the back-arc basin (i.e., the North
Qilian Ocean) was developed subsequently between the
Central Qilian Block and Alashan Block. The recognition of
the Qilian Ocean defined above, stretching from the Qaidam
Block to West-Qinling Orogenic Belt, has been verified by
some studies (Huang et al. 2015; Wu et al. 2006a; Xu et al.
2006; Yang et al. 2015; Zhang et al. 2013). Niu (2014) pro-
posed that back-arc basin originated from within overriding
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continental plate in response to the fast trench retreat.
Therefore, the northward subduction of the Qilian Ocean sea-
floor may result in the development of the North Qilian Ocean
(back-arc basin) (Huang et al. 2015). The Qilian Ocean was
closed at ~460–450 Ma (Huang et al. 2015; Yang et al. 2015),
subsequently followed by the closure of the North Qilian
Ocean at ~445 Ma (Song et al. 2013). The QCS pluton and
TW granitoids are probably generated in such tectonic setting
when the North Qilian Ocean was closed.

Currently, an issue under hot debate concerns the subduc-
tion tectonic models for the North Qilian Ocean, e.g., north-
ward subduction model (Gehrels et al. 2003a; Song et al.
2013; Yin et al. 2007), southward subduction or bidirectional
subduction models (Wu et al. 2006b, 2010; Xia et al. 2003;
Xiao et al. 2009). As Fig. 1b shown, synchronous granitoids
are widespread in the entire QOB. The single subduction tec-
tonic model cannot account for these granitic magmatic activ-
ities in the CQB.

As far as the eastern range of the North Qilian seafloor (i.e.,
the Qilian Ocean’s back-arc basin), its subduction polarity has

not yet been recognized for the lack of detailed investigation
of geological records and much of the area in eastern section
of the CQB are covered by Mesozoic-Cenezoic strata.
According to this study, we only emphasize that the North
Qilian seafloor may have undergone southward subduction
beneath the CQB which is more feasible for explaining the
petrogenesis of granitoids represented by the QCS pluton and
TW granitods in the eastern section of the CQB, in accord
with the closure/collision time. It provides insights into a gen-
uine understanding of the entire QOB evolution.

The significance of ~230 Ma granitoids

Note that sample JPC12–02 from the TWarea has an emplace-
ment age of 229.8 ± 1.5 Ma, it could be interpreted as
reflecting post-collisional event of the Qilian Orogeny.
However, granitoids with such young age are absent else-
where in the QOB. On the other hand, the coeval granitoid
magmatism is abundant in the area adjacent to the Qinling
Orogen, especially in the Qingshui area (Fig. 1b). We thus
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consider that the granitoids represented by sample JPC12–02
may actually be genetically associated with the Qinling
Orogeny (Dong et al. 2011; Wang et al. 2013), which offers
an ideal opportunity for future studies on tectonic effects of
juxtaposition of younger orogenesis on older orogens.

Conclusions

(1) The Qingchengshan (QCS) pluton was emplaced at
~430–420 Ma, characterized by high SiO2, high-K
calc-alkaline, and high Sr/Y, La/Yb ratios. The diverse
granitoids in the Tongwei (TW) area have been identi-
fied to include entirely different two magmatic events of
440.5 ± 2.5 Ma and 229.8 ± 1.5 Ma, with high Sr/Y, La/
Yb ratios and obvious enrichment of LREEs over
HREEs, except for one sample with characteristics of
A-type or highly fractionated granites.

(2) The primitive magmas parental to the Qingchengshan
(QCS) pluton and the Tongwei (TW) Early Paleozoic
granitoids were produced by partial melting of remaining
fragments of the subducted ocean crust with terrigenous
sediments under amphibolite facies conditions in re-
sponse to continental collision; such parental magmas
have evolved to give rise to the observed compositions
through varying extents of fractional crystallization.

(3) The closure of the North Qilian Ocean and the onset of
the Central Qilian-Alashan Block collision induced syn-
collisional magmatism, generating the ~440–420 Ma
Qingchengshan (QCS) pluton and Tongwei (TW) Early
Paleozoic granitoids in the eastern section of the Central
Qilian Block. The ~230 Ma granitoids in the Tongwei
area are genetically associated with the Qinling Orogeny.
Further research on granitoids in the Tongwei area will
be important for tectonic evolution of the region in a
greater context.
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