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In this paper we present a newmodel that can explain the large zircon age spectrum of ~510 – 420 Ma within a
single sample from theGangcha (Gcha) biotite granodiorite and theHuangyuan (HY) two-micamonzogranite on
the northern Tibetan Plateau. The large age spread recorded in zircons is characteristic of granitoid samples from
the studied region, which is best explained by the long-lasting magmatism since the onset of continental
collision at ~500 Ma, followed by slab steepening and the ultimate slab break-off at ~450 Ma. These gran-
itoids have a large major and trace element compositional variation, but limited initial Sr (ISr[450] = 0.709
to 0.715), Nd ( Nd[450] = −6.5 to −3.7), Hf ( Hf[450] = −4.3 to 1.5) and Pb (206Pb/204Pb[450] = 17.70 to
17.17; 207Pb/204Pb[450] = 15.60 to 15.69; 208Pb/204Pb[450] = 38.04 to 38.73) isotopic variation. The small
negative whole rock Nd[450] and Hf[450] values are most consistent with the granitoid source being domi-
nated by subducted seafloor materials. The inherited zircons with large negative Hf[450] values (e.g.
−50) are indicative of input from the lower continental crust and subducted sediments. The correlated
variations among major elements, trace elements and radiogenic isotopes are best interpreted as reflecting
melting-induced mixing of a compositionally heterogeneous source with superimposed effect of varying
extent of fractional crystallization and crustal assimilation. The inherited zircons of Palaeo-Proterozoic
age and the Archean crustal model ages signify the involvement of ancient basement rocks.
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1. Introduction

Granitoids provide indispensable information for the reconstruction
of the history of orogenic belts. Their age relationships to the adjacent
tectonic units provide strong constraints for the temporal and
tectonothermal evolution of the entire orogenic belt. TheQilianOrogen-
ic Belt (QOB) on the northern margin of the Greater Tibetan Plateau re-
cords the complete histories of continental breakup, seafloor spreading,
ocean basin closing and the ultimate continental collision from the
Neoproterozoic to the Paleozoic (Fig. 1; Song, et al., 2013, 2014 and ref-
erences therein). The subunit Qilian Block (QB) lies between the North
Qilian Orogenic Belt (NQOB) consisting of a subduction complex and
the North Qaidam-ultrahigh pressure metamorphic belt (NQ-UHPM)
(Fig. 1, Song, et al., 2013, 2014 and references therein). Despite the rel-
atively detailed studies on the metamorphic rocks and the increasing
and Mineral Resources, China
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knowledge of the magmatic rocks in the NQOB and NQ-UHPM, some
key questions remain poorly addressed. These include the timing of
collision and relationship between different subunits (Xu et al., 1994,
2006; Yin and Harrison, 2000; Yang et al., 2002, 2006; Gehrels et al.,
2003, 2011; Song et al., 2006, 2013, 2014; Wu et al., 2006a, 2010; Xiao
et al., 2009; Huang et al., 2015).

The solution to the above debate lies in better understanding the na-
ture and histories of the QB (Fig. 1). A recent study found that plutons in
the QB of syn-collisional origin have a large compositional variation and
large zircon age spread within individual samples (Huang, et al., 2015).
This age spectra cannot be divided into groups due to their indistin-
guishable zircon cathodoluminescence (CL) images and compositions,
and its origin remains unclear. We note that the similarly large age
spread within a single sample exists not only in the QB granitoids, but
has also been observed in granitoids and metamorphic rocks in the
NQ-UHPM. Crustal partial melting can last a long duration up to
30 million years (Sawyer et al., 2011). In central Iberia, continuous
anatexis lasted for 55 million years since continental collision
(Montero et al., 2004). While in the eastern Swiss Alps and north
Dabie Terrane, records in meta-igneous rocks demonstrate that felsic
magmatism lasted for ~10–15 million years (Scheiber et al., 2013;
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Fig. 1.A, Schematic geological map showingmajor tectonic units of the Qilian Orogenic Belt (after Song et al., 2013). B, Sample locations in the Gangcha and Huangyuan areas (after Huang
et al., 2015 and Pan et al., 2004).

Table 1
Sample location and brief description of samples in Qilian Block.

Sample GPS position Mineral
assemblage

SiO2% A/CNK

HY QL09-04 N36°27.116′ E101°05.634′ Qtz, Kfs, Pl, Bi, Ms 70.0 1.17
QL09-08 N36°34.895′ E101°13.520′ Bi, Pl, Qtz 67.4 1.06
QL09-11 N36°46.731′ E101°07.428′ Qtz, Kfs, Pl, Bi, Ms 70.0 1.08
QL09-13 N36°46.946′ E101°07.603′ Qtz, Kfs, Pl, Bi 72.4 1.04

Gcha QL10-43 N37°22.629′ E100°28.641′ Bi, Pl, Qtz, Kfs 68.7 1.05
QL10-36 N37°23.990′ E100°27.498′ Bi, Qtz, Pl, Kfs 72.0 1.14
QL10-39 N37°23.678′ E100°27.800′ Bi, Qtz, Pl, Kfs 68.4 1.10

Pl: plagioclase; Kfs: K-feldspar; Ms: muscovite; Qtz: quartz; Bi: biotite; HY: Huangyuan;
Gcha:Gangcha.
A/CNK = Al/(2 Ca + Na + K).
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Wang et al., 2013). Based on these information, the large zircon age
spread in the granitoids from the QB may indicate a long-lasting
magmatism. But the mechanism and tectonic implication is poorly
known.

In this study, we focus on a combined geochemical and geochronol-
ogy study of Huangyuan (HY) and Gangcha (Gcha) batholiths, both of
which are in the QB and crop out in excess of ~400 km2 (Fig. 1B). The
new zircon U–Pb ages, zircon Hf isotopes and whole rock Sr–Nd–Pb–
Hf isotopes, together with the literature data, enable a revised tectonic
model in which long-lasting granitoid magmatism occurred from the
onset of the continental collision at ~500 Ma to slab broke off at
~450 Ma, probably related to continued slab steepening.

2. Tectonic setting and geologic background

The QB lies in the middle of the QOB that makes up a broad and
composite orogenic belt at the northern margin of the Greater Tibetan
Plateau. The QB is bounded by two “suture” zones on its northern and
southern boundaries (Fig. 1A, Song et al., 2006, 2013). The terrane to
the north is the NQOB consisting of a subduction complex (Song et al.,
2013). The terrane to the south is the NQ-UHPM belt, subparallel to
the NQOB (Fig. 1A). Yang et al. (2002, 2006) propose that the NQOB
and NQ-UHPM are two separate suture zones, whereas Song et al.
(2006, 2013) suggest that they are different lithological packages of
the same subduction system: the NQOB was the major suture zone
with the collision taking place at ~450 Ma. On the other hand, Huang
et al. (2015) consider that the collision was located in the NQ-UHPM
belt.

The QB had served as a micro-continent during the accretion of the
QOB (Huang et al., 2015). The QB has an Archean–Paleoproterozoic
crystalline basement (Chen et al., 2007; Li et al., 2007; Huang et al.,
2015) with much of it formed in the period of 1.0–0.8 Ga (Guo et al.,
1999; Tung et al., 2007a, b; Xu et al., 2007; Song et al., 2012, 2013).
The basement consists of granitic gneiss, pelitic gneiss, schist and mar-
ble and is overlain by the Palaeozoic sedimentary rocks. The ophiolites
exposed at the NQOB–QB boundary have MORB affinity and were
dated at 492 Ma (Qinghai Geological Survey Institute, 2006) and
510 Ma (Hou et al., 2005). Palaeozoic I-type and S-type granitoids in
the QB have ages of ~446 – 450 Ma and are interpreted as products of
seafloor subduction and subsequent continental collision (Yong et al.,
2008; Huang et al., 2015). These granitoids are generally coeval with
the felsic intrusions within the NQ-UHPM belt (Wu et al., 2001, 2002,
2007, 2011; Gehrels et al., 2003; compilation in Huang et al., 2015).
The HY and Gcha plutons are two of the largest plutons in the QB
(Fig. 1B). The HY plutonic rocks are typical S-type granites, formed at
~450 Ma (Yong et al., 2008; Huang et al., 2015). The Gcha plutonic
rocks are I-type rocks formed at the same time (Huang et al., 2015).
3. Methods

All the analyzed samples were fresh rock chips with weathered sur-
faces and saw/penmarks removed. All the chips were leached in 5% HCl
solution, washed ultrasonically in milli-Q water and dried in a clean en-
vironment. Sample descriptions are given in Table 1. Analytical results
for samples and standards are given in Tables 2–3, and Tables S1–S4.
Major and trace element analysis (Table 2)was done at the Tianjin Insti-
tute of Geology and Mineral Resources, China (see Huang et al., 2014).
Zircon U–Pb dating (Table S1) was carried out at China University of



Table 2
Major and trace elements of granitoids in Qilian Block.

HY samples Gcha samples

QL09-04 QL09-08 QL09-11 QL09-13 QL10-36 QL10-39 QL10-43

SiO2 70.0 67.4 70.0 72.4 72.0 68.4 68.7
TiO2 0.46 0.50 0.23 0.26 0.49 0.61 0.51
Al2O3 14.7 16.2 15.8 14.1 13.9 15.1 15.3
Fe2O3 0.74 1.06 0.62 0.61 0.82 0.57 0.67
FeO 1.98 2.57 1.06 1.30 2.30 3.57 2.75
FeOT 2.65 3.52 1.62 1.85 3.04 4.08 3.35
MnO 0.04 0.07 0.04 0.04 0.05 0.05 0.06
MgO 0.95 0.99 0.64 0.73 1.21 1.57 1.38
CaO 1.25 3.08 1.75 1.95 2.46 3.26 2.93
Na2O 2.34 4.33 3.53 3.17 2.65 3.30 3.29
K2O 5.90 2.38 5.15 4.37 3.06 2.22 3.54
P2O5 0.23 0.22 0.10 0.10 0.11 0.22 0.16
LOI 1.00 0.77 0.82 0.76 0.71 0.65 0.43
Total 98.6 98.8 98.9 99.0 99.1 98.9 99.3
A/CNK 1.17 1.06 1.08 1.04 1.14 1.10 1.05
Li 39.0 89.8 54.5 66.1 56.8 114 49.2
Sc 5.43 7.09 4.36 5.38 9.98 10.4 7.33
Cr 22.7 1.44 8.95 13.2 25.9 29.8 26.6
Co 6.08 3.78 2.54 3.02 6.76 7.84 6.47
Ni 10.6 1.41 2.22 2.42 7.23 7.42 7.64
Ga 21.5 23.9 19.2 18.8 18.6 23.4 19.6
Rb 332 95 179 196 146 162 134
Sr 135 281 292 284 258 249 305
Y 13.9 30.5 15.9 17.2 16.6 25.3 18.5
Zr 249 250 134 131 235 253 210
Nb 20.9 27.7 14.0 17.8 11.0 25.0 14.1
Ba 555 551 969 726 892 273 905
La 63.8 57.0 39.6 28.6 77.6 33.0 53.2
Ce 134 98.9 78.1 48.7 144 61.5 95.9
Pr 16.4 11.5 8.59 5.94 16.6 7.38 11.9
Nd 60.1 39.3 29.8 21.3 58.9 27.5 42.0
Sm 10.5 6.92 5.11 3.86 8.68 5.67 6.82
Eu 0.92 0.99 1.04 0.90 1.42 1.24 1.43
Gd 6.92 6.02 4.07 3.28 6.61 5.39 5.64
Tb 0.81 0.92 0.58 0.53 0.84 0.98 0.76
Dy 3.47 5.38 3.02 3.10 3.88 5.51 3.91
Ho 0.56 1.11 0.59 0.61 0.64 0.96 0.7
Er 1.37 3.07 1.58 1.73 1.6 2.43 1.88
Tm 0.16 0.46 0.23 0.26 0.22 0.34 0.27
Yb 0.84 3.07 1.47 1.76 1.38 2.14 1.73
Lu 0.12 0.46 0.22 0.26 0.21 0.31 0.27
Hf 7.09 6.59 4.09 4.21 6.83 7.64 6.24
Ta 1.22 3.14 1.52 1.81 1.21 1.94 1.20
Pb 42.1 29.1 46.8 42.2 31.9 24.6 27.1
Th 43.0 16.3 19.2 13.5 29.2 13.7 19.5
U 2.81 3.72 1.86 2.57 2.83 2.98 1.41
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Geosciences (Wuhan) (CUG, see Liu et al., 2008) and replicated at China
University of Geosciences, Beijing (CUGB, see Song et al., 2010). Results
from both laboratories are consistent. About 100–150 zircon grains for
each of the studied samples were mounted in an epoxy resin disc and
then grinded/polished to expose the zircon interiors for imaging and
analysis. All the polished zircon grains were photographed under
transmitted- and reflected-light, and further examined using CL images
prior to U–Pb analysis. Each sample was dated for 30-60 grains. Laser
ablation ICP-MS zircon U–Pb analysis was carried on an Agilent 7500
ICP-MS instrument equipped with a GeoLas 2005 at CUG. Each analysis
incorporates an approximately 20 s background acquisition (gas blank)
followed by 50 s data acquisition from the sample. Detailed operating
conditions for the laser ablation system and ICP-MS instrument and
data reduction are given in Liu et al. (2008, 2010). The zircon standard
91500was used as the external standard and ran twice every 5 samples.
Rock reference standard GJ-1 were analyzed as unknowns. NIST SRM
610 was used to correct for the time-dependent drift of sensitivity and
mass discrimination for trace element analysis. Common Pb was
corrected for by ComPbCorr#3_17 (Andersen, 2002). Concordia plots
were made using Isoplot (Ludwig, 2003). The results for standard
91500 and GJ-1 are shown in Fig. S2. The obtained mean concordant
206Pb/238U ages for 91500 and GJ-1 are 1062.3 ± 1.3 Ma (2σ, n =
202) and 599.7 ± 1.2 Ma (2σ, n = 60), respectively (Fig. S2). These re-
sults are consistent with the recommended values (Wiedenbeck et al.,
1995; Jackson et al., 2004). Same samples were replicated at CUGB
using Agilient 7500a with NewWave SS 193 system. The zircon 91500
was used as the external standard. Standard TEMORA (417 Ma, Black
et al., 2003)was analyzed as unknowns. Calibrations for the zircon anal-
yseswere carried out usingNIST 610 glass as an external standard and Si
as internal standard. The obtained mean 206Pb/238U ages for 91500 and
TEMORA are 1062.5 ± 2.3 Ma (2σ, n = 198) and 417.2 ± 1.7 Ma (2σ,
n = 64), respectively (Fig. S2). Isotopic ratios were calculated using
GLITTER (ver. 4.4, Macquarie University).

Zircon grains with N95% U–Pb concordance were analysed for in situ
Hf isotopes on the same spots (or immediately nearby) as dated for U–
Pb ages so as to acquire well-constrained initial Hf isotope ratios. Zircon
in situ Hf isotopes for the HY samples were analysed using a Nu Plasma
HR MC-ICP-MS equipped with a GeoLas 2005 laser-ablation system,
with a spot size of 44 μm and a repetition rate of 10 Hz, at the State
Key Laboratory of Continental Dynamics, Northwest University in
Xi'an, China. The detailed analytical technique is given in Yuan et al.
(2008, 2010). Interference of 176Lu on177Hf was corrected for by mea-
suring the intensity of an interference-free 175Lu isotope and using a
recommended 176Lu/175Lu ratio of 0.02669 to results of the samples.
176Hf/177Hf and 176Lu/177Hf ratios of the standard zircon 91500 were
0.282304± 0.000004 and 0.00029 (2σ, n = 70). MON-1 and GJ-1 stan-
dard zircons were run in the course of analysis and give 176Hf/177Hf ra-
tios of 0.282738 ± 0.000002 (2σ, n = 38) and 0.282019 ± 0.000006
(2σ, n = 14) respectively. These results are consistent with the recom-
mended values (Yuan et al., 2008).

The Gcha samples were analyzed using the Neptune multicollector
(MC) ICP-MS, equipped with a 193 nm laser, at the Institute of Geology
and Geophysics, Chinese Academy of Sciences in Beijing, China (IGG-
CAS) following the methods of Wu et al. (2006a, 2006b). The MUD
and GJ-1 standard zircons were run during the analysis and give
176Hf/177Hf ratios of 0.282500 ± 0.000003 (2σ, n = 66) and
0.282010 ± 0.000004 (2σ, n = 29) respectively. These results are con-
sistent with the recommended values (Yuan et al., 2008, and references
therein).

The whole rock Sr–Nd–Pb–Hf isotope compositions (Table 3) were
determined on a Thermo Finnigan Neptune Plasma Ionization Multi-
collector Mass Spectrometer instrument in the Northern Centre at Dur-
ham University, UK, with analytical details given in Huang et al. (2014)
following Nowell et al. (2003). The international standards NBS987,
J&M, NBS981 and JMC475 were used for Sr, Nd, Pb and Hf isotopes,
respectively. The long term performance of the Neptune at Durham
University for Sr, Nd and Hf isotopes was reported by Nowell et al.
(2003). Details relating to standard normalization and precisions are
given in Table 3.

4. Results

The petrology of the HY and Gcha samples are described by Huang
et al (2015), and only a brief summary is given here. The HY samples
(samples with ‘QL09’ initials, Table 1) are mostly two-mica
monzogranite containing quartz, K-feldspar, plagioclase, biotite,
±euhedral muscovite and/or allanite. The Gcha samples (samples
with ‘QL10’ initials, Table 1) are biotite granodiorite, mainly consisting
of ±amphibole, biotite, quartz, plagioclase and minor K-feldspar. The
Gcha samples are biotite granodiorite without amphibole, but are close-
ly associated with amphibole-bearing granitoids.

4.1. Major and trace elements

The HY samples are felsic (SiO2, 67.4 – 72.4 wt%) (Table 2) and have
high alkalis (Fig. 2F)with A/CNK ratios of 1.05 – 1.18 (Table 2). TheGcha
samples are also siliceous (SiO2: 68.4 – 72.0 wt%) (Table 2). They have
lower total alkalis (Fig. 2) but a similar A/CNK ratio of 1.05 – 1.14



Table 3
Whole rock Sr–Nd–Pb–Hf isotopic data. The subscribe refers to the analytical session duringwhich the samplewas analysed for isotopic compositions. The averages and reproducibility of
multiple measurements of the isotope standards during the appropriate sessions are given below:
1: JMC475, 0.282160 ± 08 (2SD, n = 10); 2: 0.282160 ± 06 (2SD, n = 12). 176Hf/177Hf are reported relative to an accepted ratio for JMC475 of 0.282160 (Nowell et al., 1998)
3: J&M, 0.511110 ± 11 (2SD, n = 19); 4: 0.511110 ± 07 (2SD, n = 11). 143Nd/144Nd are reported relative to an accepted ratio for J&M of 0.511110 (Thirlwall, 1991)
5: NBS987, 0.710267 ± 10 (2SD, n = 13); 6: 0.710277 ± 15(2SD, n = 9). 87Sr/86Sr are reported relative to an accepted 87Sr/86Sr ratio for NBS987 of 0.71024 (Thirlwall, 1991)
7: NBS981, 206Pb/204Pb:16.94102 ± 184;207Pb/204Pb:15.49811 ± 142;208Pb/204Pb:36.71791 ± 512 (2SD, n = 11)
8: NBS981, 206Pb/204Pb:16.94083 ± 274;207Pb/204Pb:15.49706 ± 115;208Pb/204Pb:36.71478 ± 399 (2SD, n = 16).

HY samples Gcha samples

QL09-04 QL09-08 QL09-13 QL10-36 QL10-39 QL10-43

176Lu/177Hf 0.005 0.011 0.01 0.004 0.006 0.006
176Hf/177Hf 0.282209(09)1 0.282617(05) 1 0.282526(05) 1 0.282400(19)2 0.282510(07)2 0.282505(08)2
Hf(450) −11 1.5 −1.5 −4.3 −0.8 −1.1
147Sm/144Nd 0.1112 0.1089 0.1156 0.0894 0.1251 0.0985
143Nd/144Nd 0.511806(07)3 0.512191(08)3 0.512177(07)3 0.511992(06)4 0.512096(11)4 0.512102(07)4
Nd(450) −11.3 −3.7 −4.3 −6.4 −6.5 −4.8
87Rb/86Sr 6.98 0.96 1.95 1.60 1.84 1.24
87Sr/86Sr 0.757360(12)5 0.716540(12)5 0.721497(11)5 0.724951(12)6 0.725992(08)6 0.718970(10)6
ISr(450) 0.7126 0.7104 0.709 0.7147 0.7142 0.7116
206Pb/204Pb 18.016(1)7 19.775(2)7 18.997(1)7 18.961(1)8 19.407(1)8 18.848(1)8
207Pb/204Pb 15.619(1)7 15.721(1)7 15.678(1)7 15.682(1)8 15.707(1)8 15.672(1)8
208Pb/204Pb 39.488(5)7 39.203(5)7 38.659(5)7 40.019(04)8 39.141(04)8 39.352(03)8
208Pb/204Pbi(450) 38.04 38.42 38.22 38.73 38.35 38.34
207Pb/204Pbi(450) 15.60 15.69 15.66 15.66 15.68 15.66
206Pb/204Pbi(450) 17.70 19.17 18.68 18.57 18.87 18.62

The 147Sm/144NdCHUR0 = 0.1967,143Nd/144NdCHUR0 = 0.512638, λ(87Rb) = 1.42 × 10−11 yr−1,λ(147Sm) = 6.54 × 10−12 yr−1.
176Lu/177HfCHUR0 = 0.0332,176Hf/177HfCHUR0 = 0.282772, λ(176Lu) = 1.93 × 10−11 yr−1.
εHf (t) = [(176Hf/177Hf)sample(t) / (176Hf/177Hf)CHUR(t)− 1] × 104 (176Hf/177Hf)CHUR(t) = (176Hf/177Hf)CHUR0 − (176Lu/177Hf)CHUR0 × (eλt − 1)
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(Table. 2). The Gcha samples exhibit S-type affinity in composition but
do not contain characteristic Al-rich minerals (e.g. muscovite, garnet,
cordierite etc.). Given their close association with amphibole-bearing
diorites in the region (Huang et al., 2015), they are more consistent
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Fig. 2. SiO2-variation diagrams showing correlated major element compositional
variations between samples and sample suites (Gcha—Gangcha; HY—Huangyuan).
with being highly evolved I-type granitoids. The chondrite-normalized
rare earth element (REE) patterns for the HY and Gcha samples show
similar light REE (LREE) enrichment and flat heavy REEs (HREEs)
(Fig. 3). The HY sample QL09-04 is exceptional with a clear HREE deple-
tion (Fig. 3) which might have crystallized from a HREE-depleted melt.
The HY and Gcha granitoids fall on the trend defined by the previously
studied samples and altogether form tight correlations on SiO2-
variation diagrams (Fig. 2).
4.2. Zircon geochronology

Zircons from the HY samples (except QL09-04) are euhedral, elon-
gated and prismaticwith low luminescence andwell-developed oscilla-
tory zoning, sector zoning or simply homogeneous (Fig. 4). Igneous
zircons have Th/U ratios N 0.2, in contrast with the very low Th/U ratios
≤ 0.01 for metamorphic zircons (Rubatto, 2002; Hoskin, 2003). The Th/
U ratios of zircons fromHY samples are typically ~0.10 – 1.23 (Table S1),
reflecting a magmatic origin. Zircons show uniform within-grain REE
composition without clear core–mantle variation (Fig. S1, Table S2).
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Fig. 3. Chondrite-normalized (Sun and McDonough, 1989) REE patterns for the
Huangyuan (HY) and Gangcha (Gcha) samples.
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The zircon U–Pb ages in each sample range continuously from ~510 –

420Maand display a peak at ~445Ma (Fig. 5). U–Pb ages are not related
to compositional variations. The large spread in zircon U–Pb ages is sur-
prising considering the consistent zirconmorphology and trace element
compositions. Sample QL09-04 with HREE depletion (Fig. 3) shows dif-
ferent CL zircon images and relatively bright luminescence with dark
patches (Fig. 4). The zircon U–Pb ages in this sample yield peaks at
~600 and ~445 Ma (Fig. 5). Ages of ~600 Ma are concordant (Fig. 5)
and are mostly consistent with being inherited zircons of magmatic or-
igin from a crustal source.

Zircons from theGcha samples are euhedral and developed good os-
cillatory zoning. All the analysed spots have Th/U ratios in the range of
0.1 – 1.49 (Table S1). The REE patterns are similar to those of theHY zir-
cons (Fig. S1). Some grains have clear core–rim structure with the core
having bright luminescence (Fig. 4). The cores yield concordant or
slightly discordant U–Pb ages of 732 – 975 Ma and 1269– 1780 Ma
(Fig. 5, Table S1), indicative of their inheritance from the old lithologies.
The main zircon populations have continuous U–Pb ages spreading
from ~510 to 420 Ma and have major peaks at ~500 Ma and ~450 Ma
(Fig. 5).

The continuous age spread from ~420 to 510 Ma (not including the
inherited zircons) is obvious in both HY and Gcha samples (Fig. 5). The
HY samples have only one peak at ~445 Ma, whereas Gcha samples
have peaks at both 500Ma and 450Ma. The last panel in Fig. 5 compiles
the literature U–Pb ages between 400 Ma and 600 Ma (Huang et al.,
2015) including the data of this study. Although SIMS method could
provide more precise age data than the LA-ICP-MS method, the ob-
served age spectra are real. Similar age distribution has also been ob-
served (not shown) in many other granitoids and metamorphic rocks,
in which the zircon U–Pb data are obtained by the SHRIMP method
(Wu et al., 2001; Mattinson et al., 2006; Song et al., 2006; Zhang et al.,
2008; Wu et al., 2009).

4.3. Zircon in situ Hf isotopes

Zircon in situ Hf isotopes from the HY samples have Hf(450) values
varying from −32 to 0 with a peak at −6 and a few more negative
values at ~ −50 (Fig. 6A, Table S3), reflecting a rather heterogeneous
source. Some inherited Archean zircons in the HY samples have
depleted mantle (DM) like initial Hf isotopes (Fig. 6B) indicating juve-
nile crust growth at ~2.5 Ga. Compared to the HY samples, the Gcha
samples have limited Hf(450) variation, dominantly in the range of −6
– 0with a peak at−2 (Fig. 6A, Table S3). Largely negative Hf(450) values
of ~−30 and ~−50 are also present, corresponding to those in the HY
samples (Fig. 6A). Some inherited Paleoproterozoic zircons in the Gcha
samples have DM-like initial Hf isotopes (Fig. 6B, Table S3), indicating
juvenile crust growth at ~1.8 Ga.

4.4. Whole rock Sr–Nd–Pb–Hf isotopes

In general, the whole rock Sr–Nd–Pb–Hf isotope compositions are
consistent with those of the previous study (Fig. 7, Huang et al., 2015).
The HY samples (except QL09-04) have whole rock Nd(450) values that
are slightly negative (−4.3 – −3.7), corresponding to the whole rock
Hf(450) values of −1.5 – 1.5 (Table 3). Small variations in initial Pb iso-
topes (Pbi) (208Pb/204Pbi = 38.42–38.04, 207Pb/204Pbi = 15.60–15.69,
206Pb/204Pbi = 17.70 – 19.17) and initial Sr isotopic ratios (ISr(450) =
0.709 to 0.713) (Table 3) indicate that contribution from highly
enriched upper crust is rather limited. The Gcha samples have whole
rock Nd(450) values clustered at−6.4 –−4.8 and Hf(450) values varying
from −4.3 to −0.8 (Table 3), generally consistent with zircon Hf iso-
topes. Pbi and ISr(450) overlap with the HY samples (Fig. 7). Sample
QL09-04 has Nd(450) and Hf(450) of−11 (Table 3), respectively, indicat-
ing significant crustal contribution.

The Gcha and HY granitoids show a large compositional and
lithological spectrum with significant correlations between major
elements (Fig. 2) and between isotopes (Fig. 7), e.g., significant
positive Nd(450)- Hf(450) correlation (Fig. 7A). These correlations
are best explained as reflecting mixing between the relatively depleted
and enriched endmembers, consistent with melting-induced source
mixing of varying lithologies (see Niu and Batiza, 1997).

5. Discussion

5.1. The Archean basement of the Qilian Block

The major part of the basement of the Qilian Block has been consid-
ered to be Proterozoic on the basis of abundant ~900Ma granitoids and
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gneisses. The Palaeo-proterozoic basement age of 2348 – 2470 Ma
(Chen et al., 2007; Li et al., 2007) has been largely overlooked. Huang
et al. (2015) emphasize the involvement of the Archean Basement in
the Paleozoicmagmatism. This notion is further supported by the zircon
Hf isotope data in this study. The Hf crustal model ages of the zircons
(TDMC , calculated by assuming its parental magma derived from conti-
nental crust extracted from the depleted mantle following Griffin et al.
(2002)) are generally N1.5 Ga (Table S3). This, together with the DM-
like Hf(t) values at ca. 1.8 Ga and 2.5 Ga of the older inherited zircons
(Fig. 6B), suggests significant continental crust growthwithin the Qilian
Block prior to 1.5 Ga. Zircons with large negative Hf(450) values (up to ~
−50, Fig. 6A) and crustal model ages significantly older than 2.5 Ga
(Table S3) require the presence of an Archean basement. In this case,
the Qilian Block must have served as a micro-continent during the ac-
cretion of the QOB. It is worth to emphasize that the recognition of the
presence of an Archean basement of micro-continent origin is signifi-
cant in the context of understanding tectonic evolution of the region
in particular and continental drift/plate tectonics in general because
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Huangyuan (HY) and Gangcha (Gcha) granitoids, respectively.
without compositionally depleted and physically buoyant mantle litho-
sphere of Archean age, the QB would not have its continental drift and
amalgamation histories.

5.2. Emplacement age of the HY and Gcha plutons

Huang et al. (2015) pointed out that zircons in both Gcha and HY
granitoids from the QB have up to 40 – 60 Myr age span (mostly from
420 to 510 Ma) and thus have poorly constrained crystallization ages.
The SHRIMP dating on six zircon grains from the granitoids in the NQ-
UHPM belt, south of the QB, also gives a large age range of up to
40 Myr (445–496 Ma) and is interpreted as representing the period
from melting to final crystallization in the island arc setting (Wu et al.,
2001). Another work on the granites within the NQ-UHPM belt also
yields zircon age variation of up to 40 Myrs (~430 – 490 Ma, 10 – 15
analyses for each sample); ‘outliers’ are excluded and themean ages de-
finepeaks at 465Ma, 469Ma and 443Ma, respectively (Wu et al., 2009).
The interpretation of large age spread in the metamorphic rocks has
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been commonly done by grouping zircons according to their contrast in
CL-images and compositions. However, for granitoids with such a large
age spread, the widely used grouping does not apply because of the ab-
sence of such contrast. The possibility of mixing ages could be ruled out
because of the lack of the CL image evidence. Minor Pb-loss might be
more likely the cause of the spread along the Concordia, as the minor
Pb-loss could be easily disguised by the large error ellipses (Scheiber
et al. 2013). However, it is unlikely for the distinct granitoids from HY,
Gcha and NQ-UHPM to have experienced the same degrees of Pb-loss
and thus lead to the same age spectra. The large age spread in the
range of approximately 420 – 510 Ma seems to be a common feature
for the granitoids in the NQ-UHPM belt and the QB. Some studies have
proposed that these granitoids have an emplacement age of ~450 Ma
(Wu et al., 2001, 2009; Huang et al., 2015). In this study, we concur
with the interpretation that ~450 Ma is the emplacement age due to
the significant peak in both the HY and Gcha samples (Fig. 5). However,
the peak at ~500Ma in the Gcha samples (Fig. 5) should also be geolog-
ically significant.

5.3. Re-evaluation of previous metamorphic interpretation

Zircons in the eclogites from the NQ-UHPM belt give two major age
populations by magmatic cores and metamorphic rims, respectively
(Mattinson et al., 2006; 2009; Song et al., 2006, 2013, 2014; Zhang
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et al., 2008). Interpreting U–Pb ages of eclogites requires establishing
whether the zircons were inherited from the protolith, formed during
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UHPM assemblage, spatially closest to the granitoids of this study, are
of troctolitic (olivine+ plagioclase) protolith (Zhang et al., 2008). Mag-
matic cores of zircons from kyanite eclogites have Th/U values of N0.94
and yield an age of ~516 Ma; metamorphic rims with Th/U ratios of
b0.03 are dated at ~445 Ma (Zhang et al., 2008). These two ages were
interpreted respectively as the formation age at a mid-ocean ridge and
UHP metamorphic age during subduction (Zhang et al., 2008). This in-
terpretation may not be reasonable largely because of very low Zr con-
tents in the bulk rock composition. The basaltic liquids require
unrealistically high Zr content (e.g. N5000 ppm) to directly crystallize
zircons (Dickinson and Hess, 1982; Hanchar and Watson, 2003;
Boehnke et al., 2013). The common interpretation is that zircons
found in mafic environments must have crystallized from late stage,
evolved melts (Boehnke et al., 2013) or crust-contaminated melts
(Zheng et al., 2006). The aforementioned kyanite eclogites possess
only 4.63 – 12.15 ppm Zr (Zhang et al., 2008). Although it is difficult
to constrain the Zr contents in their parental magmas, it would be arbi-
trary to simply interpret the ages of magmatic cores as reflecting
protolith formation at mid-ocean ridges without additional information
because magma parental to kyanite generally only has on average
60 ppmZr. Zhang et al. (2010) argue this zircon core age as partial reset-
ting age from an 800 Ma basaltic protolith. It is possible that the zircon
magmatic cores in the ky-eclogites may have crystallized in other geo-
logic processes (see below).

5.4. Constraints on possible source components

The dominant range of zircon Hf(450) values in the Gcha samples is
within −6 – 0 (Fig. 6A), suggesting rather prominent juvenile compo-
nent in the source for the granitoids. Whereas the scattered zircon Hf
isotopes in the HY samples (−50 – 0, mostly −32 – 0, Fig. 6A) point
to a rather heterogeneous source with more contributions from the
old continental crust. The reworking of the continental crust of
Paleoproterozoic to Archean age is evident as manifested by the
inherited zircons, large negative zircon Hf values and ancient zircon Hf
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crustal model ages. Some inherited zircon grains possess comparable
compositions to thewhole rock Hf values of 920 and 800Ma intrusions,
indicating the involvement of the latter lithologies (Fig. 6A, B). Despite
these obvious crustal components, the overall small negative whole-
rock Hf(450) and Nd(450) values suggest the crustal input either through
mixing in the source or through crustal assimilation is actually limited.
According to the Nd–Hf isotopic modelling by Huang et al. (2015), the
major component in the source is probably the trapped subducting/
subducted ocean crust, which can produce andesitic/felsic magmas
with significant mantle isotopic signatures. The inevitable fractional
crystallization during magma evolution may have contributed to the
correlations between the major elements (Fig. 2). The correlations be-
tween isotopes, however, point to the importance of mixing between
different lithologies. As the two plutons are N150 km apart, the correlat-
ed trends are best explained as resulting from varying degrees of
melting-induced mixing of varying source lithologies (see Niu and
Batiza, 1997), e.g. the subducted oceanic crust, heterogeneous old crust-
al material and sediments, with superimposed effect of varying extent
of fractional crystallization and crustal assimilation.

5.5. Tectonic model and interpretation of U–Pb ages in the granitoids

Understanding the large age range in the HY and Gcha zircons and
the temporal and spatial link between QB and adjacent NQ-UHPM belt
is important for reconstructing the tectonic history in the region. The
granitoids in the NQ-UHPM belt have zircon ages of 420 – 497 Ma
(see compilation in Huang et al., 2015), which is coeval with the
eclogite-facies metamorphism within the belt (Mattinson et al., 2006;
2009; Song et al., 2006; Zhang et al., 2008). Our granitoids present age
range of zircons in individual samples similar to the age spread of
zircons within single plutonic samples in the NQ-UHPM belt (see
above). Importantly, the age range in zircons from the HY and
Gcha plutons overlaps with the age distribution within a single
metamorphic rock from the same region (Mattinson et al., 2006;
2009; Song et al., 2006; Zhang et al., 2008). The similarity and
close spatial relationship cannot be coincidental but strongly sug-
gest a possibly genetic relationship between the magmatism and
metamorphism.

Several studies indicate that the eclogite-facies metamorphism in
the NQ-UHPM belt occurred during the period of 460 – 430 Ma (Yang
et al., 2002; Song et al., 2003, 2005, 2013, 2014; Mattinson et al., 2006;
Xu et al., 2006; Chen et al., 2009a, 2009b; Zhang et al., 2010) and peaked
at ~450Ma (Song et al., 2006, 2014; Zhang et al., 2008). Xu et al. (2006)
concluded according to the HPM rocks in the NQ-UHPM that the exhu-
mation started at 470 – 460 Ma. In this case, the collision should have
happened perhaps ~20 – 25 Myrs earlier (van Hunen and Allen,
2011), i.e., ~490 Ma, accompanied by intense magmatism (Mo et al.,
2008; Niu et al., 2013; Huang et al., 2014). The magmas produced by
partial melting of the trapped/subducted upper ocean crust during con-
tinental collision are compositionally andesitic to felsic with inherited
mantle isotopic signatures (Mo et al., 2008; Niu and O'Hara, 2009;
Huang et al., 2014, 2015). The basaltic source required by the whole
rockNd andHf isotopesmodelling for theHY and Gcha samples is prob-
ably the trapped subducted/subducting oceanic crust (Huang et al.,
2015). The inferred large scale magmatism prior to 470 Ma in the NQ-
UHPM belt and the QB has not yet been clearly identified, but the
~500 Ma peak defined by the Gcha samples and the age spread since
510Ma in bothHY andGcha granitoids aswell as in the granitoidswith-
in the NQ-UHPM may be evidence for the magmatism initiated during
the collision. On the other hand, as aforementioned, the igneous
protolith for some eclogites (e.g., the incompatible element depleted
troctolite cumulate) were unlikely to have crystallized zircons. There
may be alternative interpretations for these magmatic zircon core ages
in eclogites. Considering the overlapping ages with the granitoids as
well as the overlapping ages between rims and cores of zircons from
eclogites in the Qilian Orogenic Belt (Mattinson et al., 2006), we suggest
that the magmatic age of ~516 Ma is better explained by zircon recrys-
tallization coeval with the granitoids, during the period of the continen-
tal collision; zircon rims grew during later metamorphism.

A close association of the exhumed high-pressure (HP) rocks with
contemporary igneous rocks is considered to be indicative of slab
break-off (Davies and von Blanckenburg, 1995; von Blanckenburg and
Davies, 1995; Sun et al., 2002). Continental collision is not an instanta-
neous process (Royden, 1993). From the collision to the slab break off,
it may take 5 – 40 million years to complete (Gerya et al., 2004;
Ghasemi and Talbot, 2006; Andrews and Billen, 2009; Van Hunen and
Allen, 2011). Once the collision starts, the subducting oceanic slab
steepens further enhanced under gravity. This steepening would open
a physical gap which draws a lateral mantle flow (Fig. 8B, Niu, 2005)
from the ambient hydrated mantle wedge (Fig. 8B) to form a new as-
thenospheric mantle wedge in direct contact with the lower crust of
the overriding plate where there may be no lithospheric mantle root
(Fig. 8A, B).

The newly replenished mantle material may have been partially
melted during prior slab subduction and therefore was too refractory
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to undergo decompression melting. On the other hand, due to the ab-
sence of slab roll-back at this stage, the mantle flow may be sluggish
(Kincaid and Griffiths, 2003). Thus, this slow-flowing mantle is easy to
turn into the lithospheric mantle due to heat loss, but should still be
hot enough to induce partial melting of the lower crust and keep the
trapped slab above hydrous solidus (N650 °C, Mo et al., 2008). The
trapped/subducted oceanic crust as being the major source for both
HY and Gcha granitoids since the onset of collision through slab steep-
ening is consistent with small whole rock Nd(450) and Hf(450) values
which requires 70 – 80%mantle contribution (Huang et al., 2015). Addi-
tional materials from the lower crust and subducted sediments can ex-
plain the inherited zircons with large negative zircon Hf(450) values and
wide compositional range. The significant correlations between major
elements and between isotopes can be readily explained by melting-
induced mixing in a compositionally heterogeneous source (Niu and
Batiza, 1997). The dominant age peaks at 450 Ma for both HY and
Gcha samples may indicate the extensive heat supply from the
convecting asthenosphere due to slab break off (Fig. 8C). It is hard to
evaluate if the ages of ~510 – 420 Ma record multiple magma pulses
or a continuous long-lasting event based on the analytical precision in
this study. Nevertheless, we suggest that partial melting may have con-
tinued from onset of the collision at ~500Ma to the ultimate slab break-
off at ~450 Ma, approximately lasting for ~40 – 50 Myrs.

Conclusion

1, The granitoids from theHY and Gcha plutons in the Qilian Block have
a large compositional range and define good correlations between
major elements and between isotopes. These features are consistent
with being products reflecting varying degrees of melting-induced
mixing of a compositionally heterogeneous source.

2, The inherited Paleoproterozoic–Archean zircons, the largely negative
zircon Hf(450) as low as to−60 and Archean crustal model ages indi-
cate that the Qilian Block represents an ancient microcontinent. The
DM-like Hf isotopes at ~1.8 and ~2.5 Ga point to juvenile crust
growth at these times.

3, These granitoids are characterized by a large age spread of ~510 –

420Ma recorded in zircons with peaks at ~500Ma and 450Mawith-
in individual samples, similar to the age distribution in the granitoids
and metamorphic rocks in the adjacent NQ-UHPM belt. This feature
is best explained by magmatism initiated at the onset of continental
collision at ~500Ma, followed by continued slab steepening until the
ultimate slab break-off at ~450 Ma. Magmatic zircon cores in the
eclogites dated around ~500 Ma may have actually crystallized dur-
ing syncollisional magmatism in the context of the continental colli-
sion rather than represent the timing of protolith age of ocean ridge
magmatism.
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