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Abstract The effect of paleo-Pacific subduction on the

geological evolution of the western Pacific and continental

China is likely complex. Nevertheless, our analysis of the

distribution of Mesozoic granitoids in the eastern conti-

nental China in space and time has led us to an interesting

conclusion: The basement of the continental shelf beneath

East and South China Seas may actually be of exotic origin

geologically unrelated to the continental lithosphere of

eastern China. By accepting the notion that the Jurassic–

Cretaceous granitoids in the region are genetically associ-

ated with western Pacific subduction and the concept that

subduction may cease to continue only if the trench is

being jammed, then the termination of the granitoid

magmatism throughout the vast region at *88 ± 2 Ma

manifests the likelihood of ‘‘sudden’’, or shortly before-

hand (*100 Ma), trench jam of the Mesozoic western

Pacific subduction. Trench jam happens if the incoming

‘‘plate’’ or portion of the plate contains a sizeable mass that

is too buoyant to subduct. The best candidate for such a

buoyant and unsubductable mass is either an oceanic pla-

teau or a micro-continent. We hypothesize that the base-

ment of the Chinese continental shelf represents such an

exotic, buoyant and unsubductable mass, rather than sea-

ward extension of the continental lithosphere of eastern

China. The locus of the jammed trench (i.e., the suture) is

predictably located on the shelf in the vicinity of, and

parallel to, the arc-curved coastal line of the southeast

continental China. It is not straightforward to locate the

locus in the northern section of the East China Sea shelf

because of the more recent (\20 Ma) tectonic re-organi-

zation associated with the opening of the Sea of Japan. We

predict that the trench jam at *100 Ma led to the re-ori-

entation of the Pacific plate motion in the course of NNW

direction as inferred from the age-progressive Emperor

Seamount Chain of Hawaiian hotspot origin (its oldest

unsubdued Meiji and Detroit seamounts are *82 Ma),

making the boundary between the Pacific plate and the

newly accreted plate of eastern Asia a transform fault at the

location east of the continental shelf of exotic origin. This

explains the apparent *40 Myr magmatic gap from *88

to *50 Ma prior to present-day western Pacific subduction

initiation. We propose that basement penetration drilling

on well-chosen sites is needed to test the hypothesis in

order to reveal the true nature of the Chinese continental

shelf basement. This testing becomes critical and cannot

longer be neglected in order to genuinely understand the

tectonic evolution of the western Pacific and its effect on

the geology of eastern China since the Mesozoic, including
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the cratonic lithosphere thinning, related magmatism/min-

eralization, and the mechanism of the subsequent South

China Sea opening, while also offering novel perspectives

on aspects of the plate tectonics theory. We also suggest

the importance of future plate tectonic reconstruction of the

western Pacific to consider the nature and histories of the

Chinese continental shelf of exotic origin as well as the

probable transform plate boundary from *100 to

*50 Ma. Effort is needed to reveal the true nature and

origin of the *88 ± 2 Ma granitic gneisses in Taiwan and

the 110–88 Ma granitoids on the Hainan Island.

Keywords Mesozoic granitoids in eastern China �
Exotic origin of Chinese continental shelf � Trench
jam � Transform plate boundary � Basal hydration
weakening � Lithosphere thinning � Craton
destruction � Mantle hydrous melting � Crustal
melting � Plate tectonics � South China Sea

‘‘There are no facts, only interpretations.’’

[Friedrich Nietzsche (1844–1900)]

1 Introduction

It has been a common knowledge that the continental shelf

is the offshore extension of the continent covered with

land-derived sediments. That is, the basement of the shelf

is geologically part of the same continental lithosphere. As

a result, this common perception has been widely accepted

as a fact without doubt in all relevant studies. While this

notion may still hold true in places, our analysis of the

distribution of Jurassic–Cretaceous granitoids in the eastern

continental China in space and time led us to an interesting

conclusion, which is in nature a testable hypothesis of both

regional and global significance, i.e., the basement of the

Chinese continental shelf (beneath East and South China

Seas) may actually be of exotic origin geologically unre-

lated to the continental lithosphere of eastern China. We

predict the shelf basement to represent a sizable mass with

large compositional buoyancy, transported to and collided

with the continental China at *100 ± 10 Ma. This new

view is an element of our ongoing research in evaluating

the possible consequences of paleo-Pacific subduction on

the tectonic evolution of the western Pacific and conti-

nental China since the Mesozoic. In this context, we

acknowledge that much effort has been expended in the

past decades, in particular over the past *10 years, to

understand the why (triggers), how (mechanisms), when

(timing and time span) and where (spatial extent) of the

lithosphere thinning in eastern China with highly com-

mendable achievements as evidenced by abundant publi-

cations, but it is our view that the bottleneck for any further

insight lies in a genuine understanding of the nature and

histories of the continental shelf of China.

In this paper, we do not wish to review the mounting

literature on regional geology, geophysical investigations

and many detailed petrological and geochemical studies,

but report our findings and inferences that have led to the

hypothesis. We then discuss the geodynamic implications

of global significance in the regional context and plausible

ways of testing the hypothesis.

2 Motivation of this study

The Paleozoic diamondiferous kimberlite volcanism in

eastern China convinced many that there existed a long-

lived North China Craton (NCC) with the lithosphere

thickness in excess of 200 km. There was also the view that

the NCC may not be a typical craton because of its wide-

spread tectonomagmatic activities since the Mesozoic [1,

2]. The current consensus is that the NCC was once indeed

a type craton, but lost much of its deep *120 km portion

since the Mesozoic, leaving its present-day thickness of

60–80 km [3–17] by means of delamination [4, 8–13],

thermal and chemical erosion [3–5, 7, 15] and basal

hydration weakening [18, 19].

While the potential effect of the paleo-Pacific subduc-

tion on the Mesozoic geology of the eastern continental

China has been mentioned in the literature, Niu [18, 19]

was the first to specifically advocate the concept of basal

hydration weakening as the primary mechanism to convert

the basal portion of the mantle lithosphere into astheno-

sphere, hence having thinned the lithosphere, beneath

eastern China. The water that did so came from dehydra-

tion of the paleo-Pacific slab that lies horizontally in the

mantle transition zone beneath eastern China [20, 21].

Different opinions may still exist, but the role of paleo-

Pacific subduction is now widely accepted as manifested

by the thematic conference ‘‘The connection of the North

China Craton destruction with the Paleo-Pacific subduc-

tion’’ that took place on March 26–27, 2015, in Beijing,

organized and supported by the NSFC. In this context, it is

necessary to better inform the readers again of the essence

of the basal hydration weakening concept: (1) It is not

limited to the NCC destruction, but applies to the litho-

sphere thinning throughout eastern China at least east of

the GGL shown in Fig. 1 [18, 19, 22] because the surface

elevation directly reflects the lithosphere thickness [18]; (2)

the wisdom is that the strength (and thus the stability) of

mantle lithosphere is largely controlled by how dry it is

(see Fig. 13 of Ref. [22]). The lithospheric root can be
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strong and long lasting if it is dry (see Ref. [19, 22, 23]),

but can be readily weakened with the addition of water

(e.g., through the form of hydrous melt). In contrast, the

effect of heating (e.g., by hot mantle plumes) is insignifi-

cant in weakening the lithosphere (see pp. 4155–4156 of

Ref. [23]). This basic principle has inspired our insight into

the concept of basal hydration weakening. On the other

hand, the Mesozoic-Cenozoic geology of the eastern con-

tinental China in the greater context of the western Pacific

further attests the above wisdom.

Despite the efficacies of the basal hydration weakening

mechanism in causing lithosphere thinning, we recognize a

potential problem that needs addressing [22]. The present-

day paleo-Pacific slab stagnant in the mantle transition

zone beneath eastern China is connected to the current

western Pacific subduction zones, which began at *50 Ma

[24, 25], meaning that the transition-zone slab is of

Cenozoic age. This is inconsistent with the documentation

that the lithosphere thinning beneath eastern China

occurred largely in the Mesozoic with the peak at

*120 Ma [14] and was probably completed before

*110 Ma inferred from the literature data [13, 22, 26, 27].

This means that the continued dehydration of the present-

day transition-zone slab maintains the seismic low-velocity

zone (LVZ) beneath the already thinned lithosphere in

eastern China, but is not the very cause of the lithosphere

thinning in the Mesozoic [22]. Therefore, two basic ques-

tions need addressing:

(1) Was there any subduction zone in the Mesozoic

western Pacific with subducted slab lying in the

mantle transition zone beneath continental China, a

scenario as seen today, that may have developed

basal hydration weakening to cause the lithosphere

thinning, largely completed prior to 110 Ma?

(2) If (1) above is true, then why and when did this

subduction terminate? Can we locate the locus of this

Mesozoic subduction (i.e., equivalent to a suture)?

Taiwan

Korea

India

Japan
China

Philippines

Kreemer [2013]

Fig. 1 Portion of the world topographic map, indicating the continental shelf of the East and South China Seas in the context of the eastern Asia

continental tectonic framework and western Pacific trenches, arcs and back-arc basins. Also shown are the present-day plate motion vectors using

the ‘‘sub-asthenosphere’’ reference frame (APM; from UNAVCO: http://jules.unavco.org/Voyager/GEM_GSRM). The pink dashed line

approximates the great gradient line (GGL) marked by contrasting differences in elevation, gravity anomaly, crustal thickness, heat flow and

mantle seismic velocity between high plateaus in the west and hilly plains to the east, which is interpreted as the expression of sharp variation in

lithospheric thickness from C150 km thick beneath the plateaus to B80 km thick beneath eastern China, whose thinning histories/mechanisms

and the coeval magmatism have been interpreted to be genetically associated with paleo-Pacific subduction in the Mesozoic and thereafter [18],

leading to our testable prediction for the exotic nature of the continental shelf of East and South China Seas. Note that the Islands of Taiwan and

Hainan are on the continental shelf of exotic origin
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3 The presence of a Mesozoic Pacific subduction zone

toward beneath continental China

The answer to question (1) above is definite. The wide-

spread Jurassic–Cretaceous granitoids in the eastern con-

tinental China (from Northeast China to North China and to

Southeast China as seen in Fig. 2) are indirect but con-

vincing evidence for the presence of Pacific plate subduc-

tion beneath continental China in the Mesozoic [28, 29].

Hence, the eastern continental China in the Mesozoic was

characterized by an active continental margin, similar to

the present-day Andean-type margin with a continental

magmatic ‘‘arc’’ [30, 31].

3.1 An active continental margin, but not an Andean-

type margin

While we agree that the eastern continental China in the

Jurassic–Cretaceous represented an active continental

margin with underlain subduction and related crustal

granitoid magmatism, we also agree with Zhang [32] that it

was NOT an Andean-type margin because of lacking a

well-defined narrow continental magmatic arc as does

along the Andes at present. Indeed, the Jurassic–Cretaceous

granitoids in eastern China span emplacement time for

*100 Myrs from *190 to *88 Ma (Fig. 3) and spread

diffusively in a wide zone in excess of 1000 km (see

Figs. 2, 4, 5). Importantly, contrary to the arguments and

ideal model expectations in the literature, these granitoids

show no systematic NW-to-SE age variation of any sort as

demonstrated by plotting the emplacement age as a func-

tion of longitude (Fig. 4) or as a function of the shortest

distance (perpendicular) to the GGL (Figs. 1, 2, 5). That is,

the granitoid magmatism could take place in the coastal

region as well as anywhere in the continental interiors as

far as [1000 km to the west at any latitude and at any

given time as shown, for example, in panel D at *130 Ma

(Figs. 4, 5). Obviously, an Andean-type continental margin

model cannot explain the Mesozoic granitoid magmatism

in the eastern continental China, but requires the presence

of an areally vast mantle heat source in space and time

echoed by the granitoids at the crustal level [22].

3.2 Evidence for the presence of Mesozoic Pacific slab

in the mantle transition zone beneath eastern

continental China (as the Cenozoic slab seen

at present)

3.2.1 The Mesozoic granitoids in eastern China largely

resulting from intra-crustal re-working

A brief conceptual review is useful here to better under-

stand the random distribution of the Mesozoic granitoids in

the eastern continental China in space and time. The cen-

tury-old debate on the origin of granites and granitoids was

settled by experimental demonstrations [33] that granitoids

are of magmatic origin through partial melting of existing

crustal rocks. Wyllie [34, 35] further synthesized experi-

mental data on possible sources through anatexis to pro-

duce granitoid magmas. The continued studies

accumulated over the past 40 years, especially with the aid

of trace element and isotope geochemistry, have consoli-

dated our understudying that with the exception of minor

A-type granitoids that could be produced by protracted

fractional crystallization of alkali basaltic melts, all other

granitoids must be produced by crustal melting with the

melt undergoing varying extent of fractional crystallization

(see Ref. [18]). Partial melting of basaltic ocean crust or

underplated mafic rocks produces I-type granitoids of

dominantly dioritic-granodioritic compositions with inher-

ited mantle isotopic signatures (e.g., high and more positive

eNd(t) values). On the other hand, partial melting of old and

mature continental crustal rocks produces S-type granitoids

of more felsic compositions with Al2O3-rich phases and

low and more negative eNd(t) values.
In terms of continental crust growth, I-type granitoids

and the volcanic equivalent directly or indirectly derived

from the mantle represent net contributions whereas S-type

granitoids and the volcanic equivalent are products of

crustal reworking with no net contributions to crustal

growth. Our current and ongoing studies of the syncolli-

sional granitoids from southern Tibet, Qilian, Qinling and

Kunlun orogenic belts are exclusively I-type granitoids

dominated by high eNd(t) (Fig. 6b), supporting the hypoth-

esis of continental collisional zones as primary sites for net

continental crustal growth (i.e., juvenile crust formation

and preservation) because the immediate source rocks are

interpreted to be last crustal fragments of the closing ocean

basins with inherited mantle isotopic signatures [36]. By

contrast, the Mesozoic granitoids from eastern China are

dominated by S-type granitoids with volumetrically minor

I- and A-types, possessing low eNd(t) isotopic signatures

(Fig. 6a), which is consistent with these granitoids being

largely crustal re-working with limited juvenile crustal

contribution.

3.2.2 On the heat source for the intra-crustal re-working

and the Mesozoic granitoid magmatism in eastern

China

Compared with mantle peridotites, continental crustal

rocks have significantly lower solidi (*600 to *900 �C;
see Refs. [34, 35]) with the actual melting temperatures

depending on water contents. Nevertheless, the geotherms

are such that all the crustal rocks are in solid state under
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subsolidus conditions. That is, crustal melting is unlikely

without heating. Excess heat accumulation due to

radioactive decay is theoretically possible if thermal insu-

lation strata are present and effective, but this could be true

only locally [18] and cannot be invoked as effective

mechanism to explain the widespread Mesozoic granitoids

in eastern China. The adequate heat source for crustal

melting can only come from mantle-derived basaltic melts

[18, 29, 37, 38]. This well-established concept leads us to

reason and to depict an interesting picture:
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Fig. 2 Eastern portion of simplified geological map of continental China, emphasizing the distribution of Jurassic and Cretaceous granitoids

(after 1:1,000,000 Geological Map and Data Base by the Chinese Geological Survey, 2005). Note that the emplacement ages of the granitoids in

terms of geological time periods are taken from that map, but high-quality zircon crystallization U–Pb ages from the recent literature are used for

discussion (see Figs. 3–5). The use of K (Cretaceous) follows what is given in that map when K1 and K2 were not distinguished in that map. Note

that those Triassic or older granitoids interpreted to be associated with the CAOB (Central Asia Orogenic Belt) to the north and with the QDOB

(Qinlian-Dabie Orogenic Belt) to the south are not considered here so as to focus on the influence of the paleo-Pacific subduction. Given the

outstanding feature of the GGL (Great Gradient Line, see Fig. 1) reflecting the lithosphere thickness and thinning mechanisms as a consequence

of paleo-Pacific subduction, and because the GGL (trending *N29�E) is to a first order perpendicular to the northwestward (*N61�W)

subduction of the paleo-Pacific plate, it is useful to examine the distribution of the granitoids in time and space with respect to the GGL

(equivalent to possible correlation with the paleo-Pacific subduction). Given the large longitudinal and latitudinal span of these granitoids, we

arbitrarily divide them into A, B, C, D and E five sections as indicated by the light-brown dashed lines (also see Figs. 3–5). The pink open circles

are reported granitoids of Cretaceous age in the literature (not in the above-mentioned map) from Japan, South Korea and Island of Taiwan. The

tectonic units indicated are West Block (WB), East Block (EB) and Trans-North China Orogen (TNCO) of the North China Craton (NCC),

Yangtze Craton (YZ) and Cathaysia Block (CB). The international border of continental China is in red, and the coastal lines of China are in blue
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(1) The granitoid distribution in the Mesozoic eastern

continental China in time (emplacement age) and

space (Figs. 2, 5) effectively echoes the mantle melt

formation in the corresponding time and space. The

key question is thus what may have actually caused

mantle melting randomly in such time and space?

(2) Lithosphere stretching induced asthenosphere upwel-

ling and decompression melting can be ruled out

because this would produce coeval magmatism of

linear distribution, which is not observed. Thermal

mantle plume melting can also be ruled out because

of lacking flood basalts, lacking expected space–time

pattern of surface magmatism, and because plume

melting residues would thicken, not thin, the litho-

sphere against geological record.

(3) Hence, the lithosphere thinning, lithospheric mantle

melting and induced crustal melting manifested by

the observed time–space distribution of the granitoids

altogether must represent different effects of the same

cause. We hypothesize that the common cause is our
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Fig. 3 Histograms with 10-Myr bin width to show the age distribution of Jurassic–Cretaceous granitoid abundances in the eastern continental

China in sections A, B, C, D, E (see Fig. 2) and altogether as ‘‘All’’. There are 465 high-quality zircon U–Pb ages in total from the recent

literature (see Appendix A for data and Appendix D for data sources). To be statistically more representative of the granitoid abundances in space

and time, we have made a very painstaking effort to obtain the exposed area size of age-constrained plutons by the point-counting method using

30-by-30 (latitude-by-longitude) unit grids on the basis of the recently available 1:250,000 Geological Maps (Chinese Geological Survey, 2005)

with details given in Appendix B. For example, in Section A, there are 88 unit grids with granitoid ages in the range of 135–125 Ma (the 130 Ma

bin). The light blue arrowed lines show that *50 % of the granitoids were emplaced prior to the time indicated (e.g., in the case of A, 50 % of

the granitoids were emplaced prior to 135 Ma). For the entire data set, 50 % of the granitoids were emplaced prior to 137 Ma. The other points to

note are: (1) most granitoids were emplaced prior to 110 Ma as indicated by the arrowed pink lines, and (2) the granitoid magmatism was

essentially terminated by *88 Ma (see text for significance)
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familiar concept and process of basal hydration

weakening [18, 19] that weakens and converts the

basal lithosphere into asthenosphere while producing

basaltic melts from the being-converted mantle

lithosphere. Such melts rise, underplate/intrude the

crust en route to the surface (the Mesozoic basalts/

minor andesites with ‘‘arc’’ signature) while causing

crustal melting for the observed granitoids.
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Fig. 4 Distribution of Jurassic–Cretaceous granitoids in eastern China in sections A, B, C, D, E (see Fig. 2) and altogether (Panel ‘‘All’’) plotted

against longitude. The data are the same as in Fig. 3. The gray-filled circles are actual sample locations (longitude), and the solid circles filled in

red are the same data points corrected for sample locations by projecting onto the central plane perpendicular to the GGL in each of the A–E

sections. Clearly, there is no systematic age variation as a function of latitude (between panels A–E from north to south) and longitude

(horizontal axis). We emphasize that there is no obvious NW-to-SE age decrease except for samples from Section D, but the apparent trend

disappears if the samples from Huashan plutons (in the rectangle) could be excluded. Note: the massive granitoids in Section D apparently form a

NWW trend (Figs. 2, 9 below) parallel to the Qinling-Dabie Orogen (QDO). These ‘‘Xiao Qinling’’ granitoids have been interpreted as post-

collisional products of the *230 Ma QDO in the literature, but we consider them as genetically associated with the Pacific subduction and the

QDO-parallel trend simply results from enhanced erosion/outcropping due to continued uplift of the QDO because QDO-related deformation

continued throughout the Mesozoic as evidenced by the *400 km offset of the QDO with the Sulu Orogen (Fig. 2). The apparent rarity of the

granitoids in Section C results from the poor exposure within the topographic plains of the North China Craton (NCC)
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(4) It follows that there must be a source of water in the

mantle whose space-and-time distribution corre-

sponded to the space-and-time distribution of the

crustal granitoid magmatism in the Mesozoic eastern

continental China (Figs. 2–5). We further hypothesize

that in the Mesozoic, the source of water or ‘‘reser-

voir’’ was most probably the stagnant paleo-Pacific

slab in the mantle transition zone that laterally

extended far to the west in excess of 1000 km from

the coast (Fig. 2) as is the case observed in the

Cenozoic [20, 21]. Such areally widespread stagnant

slab would differentially release water with time

(depending on relative age and extent of thermal

equilibrium with the ambience), causing lithosphere

thinning by basal hydration weakening as elaborated

in [18, 19] and illustrated in cross section in Fig. 7a, b

with phase equilibria and detailed explanations given

in Fig. 7c, d. Figure 7b also explains the time–space

random distribution of the granitoids in the Mesozoic

eastern continental China (Figs. 2–5).
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Fig. 5 Same as in Fig. 4, but the samples are plotted as a function of the shortest distance (perpendicular) to the GGL indicated by the pink

dashed lines (see Fig. 2) in terms of actual kilometers. Important points to note: (1) The granitoids are not limited to the east of the GGL, but also

exist in abundance west of the GGL from *190 to 100 Ma; (2) there is no obvious age variation with respect to the GGL; and (3) in a long time

period of *100 Myrs (from *190 to *88 Ma) the granitoid magmatism occurred in a zone in excess of 1000 km wide in the eastern

continental China. All other information is the same as in Fig. 4
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With all the conceivable possibilities considered, the

above interpretations constitute an important novel

hypothesis to test.

4 Termination of the Mesozoic subduction at ~100 Ma

This section attempts to answer question (2) above. If we

accept that there indeed existed a Pacific subduction zone

toward beneath the eastern continental China in the

Mesozoic as manifested by the widespread granitoids with

their origin elaborated above, then we must address this

question. This is because the present-day western Pacific

subduction zones are young (B*50 Ma) and have nothing

to do with the Mesozoic lithosphere thinning and related

granitoid magmatism, and because the prevailing models

dedicated to discuss the tectonic evolution of the western

Pacific since the Mesozoic have simply assumed the

‘‘typical Andean-type margin’’ and thus focused on how

and when the Andean-type margin evolved to the present-

day western Pacific type plate boundary [31].

Figure 3 illustrates in the form of histograms to show

the emplacement ages of the granitoids in the Mesozoic

eastern continental China uninfluenced by the CAOB and

QDOB magmatism. To see how the emplacement ages may

vary with latitude, we divided from north to south into five

sections A, B, C, D and E (see Fig. 2). Appendices referred

to in caption to Fig. 3 give the data and data sources. If the

granitoids are indeed associated with the lithosphere thin-

ning and the intensity of granitoid magmatism approxi-

mates the intensity of the lithosphere thinning as we argue,

then the thinning began at *190 Ma and ended largely at

*110 Ma to the north. In the southern sections, the

lithosphere would begin thinning more or less the same

time at *180 Ma, but ended at *110–88 Ma. Taking all

the age data together (in panel All, lower right), we can say

the following with confidence:

(1) The Mesozoic lithosphere thinning began at

*190 Ma with gradual increase in intensity to reach

an apparent peak at *140 Ma. The thinning intensity

decreases in a step function with time until *88 Ma

when the granitoid magmatism ended, implying the

lithosphere thinning in discussion would have also

ended at this time (see below).

(2) We must emphasize again (see Ref. [18]) that the

lithosphere thinning was not limited to the NCC, but

took place throughout the entire eastern continental

China from Northeast to southeast beyond the NCC as

indicated by the granitoid distribution (Figs. 2–5) as

well as the topographic contrast on both sides of the

GGL (Fig. 1).

(3) About 50 % of the dated granitoids are older than

*137 Ma, suggesting that, by inference, significant

lithosphere thinning had already happened by this

time.

(4) About 89 % of dated granitoids are older than

110 Ma, suggesting that, by inference, the lithosphere

thinning was essentially completed by this time, a

prediction [22] that is consistent with the inference

from the basaltic geochemistry [13, 26, 27]. This is

because the NCC basalts erupted before *110 Ma

have a typical ‘‘crustal’’ or ‘‘arc’’ signature, which is

consistent with melting of a metasomatized mantle

lithosphere source [22, 39, 40], whereas the NCC

basalts erupted after *110 Ma resembling the
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Fig. 6 Neodymium (eNd(t)) isotope histograms to compare the

Jurassic–Cretaceous granitoids in the eastern continental China

(a) (see Appendix C for data and Appendix D for data sources)

with orogenic (syncollisional in a broad sense) granitoids from Qilian,

Qinling, Kunlun and Gangdese granitoids (b) (data are from [54–66]

and our unpublished data on samples from these various orogenic

belts). Clearly, the eastern China granitoids are dominated by mature

crustal sources, whereas the syncollisional granitoids have sources

with rather significant mantle input such as melting of the ocean crust

during collision with minor continental crustal contributions [36]
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present-day ocean island basalts (OIB) whose com-

position is consistent with melting of the metasom-

atized asthenosphere source, and most of which are in

the category of alkali basalts [22, 39, 41].

(5) Importantly, the granitoid magmatism essentially

terminated at *88 Ma (± 2 Ma analytical error),

suggesting that, by inference, the cause of crustal

melting ceased to exist at this time. This indicates that

mantle melting for basaltic melt as heat source for

crustal melting and granitoid magmatism essentially

stopped. This means that the trigger of mantle

transition-zone slab dehydration likely diminished.

The straightforward conclusion would be that the

subduction suddenly stopped at *88 Ma. The fact

that rarely or essentially little or no magmatism from

*88 to *50 Ma in the greater region of the western

Pacific is consistent with this inference that the

subduction stopped for the eastern continental China

granitoid magmatism. This is an important observa-

tion that must be considered concerning the tectonic

evolution of eastern China. However, to determine

the exact timing of subduction cessation is not

straightforward because transition-zone slab dehydra-

tion would continue for some time until (a) it can no

longer dehydrate constrained by the stability of the

hydrous phases in the transition zone (e.g., wadsleyite

*3 wt% H2O; ringwoodite *3.2 wt% H2O) and

(b) even if dehydration continued, the amount of H2O

released may no longer be transported in the form of

hydrous melt (i.e., under-saturated and absorbed by

minerals) during its percolation through the astheno-

sphere (the convective yellow region in Fig. 7b). If

the water (or hydrous melt) is entirely absorbed in the

mantle (e.g., \0.2 wt% at depths of [100 km or

\0.4 wt% at depths of \100 km; see Fig. 7c, d),

there would be no water-facilitated lithosphere melt-

ing to produce basaltic melt as heat source available

to cause crustal melting and the granitoid magmatism.

(6) The above analysis leads us to the conclusion and the

subduction must have stopped at*88 Ma and is more

likely some time prior to*88 Ma as certain amount of

time is needed for last fragments of the subducted

transition-zone slab to release adequate water for

mantle melting and the resultant crustal granitoid

magmatism. While experimental work is needed to

quantify the amount of time required for complete

transition-zone slab dehydration to lose the potential

for causing mantle melting and corresponding crustal

magmatism, we predict that the time may be short and

is on the order of*10 Myrs. This would mean that the

Mesozoic subduction may have stopped at *100 Ma.

bFig. 7 a Modified from Ref. [18] to illustrate the concept of basal

hydration weakening as the primary mechanism to cause lithosphere

thinning by converting the basal ‘‘lithosphere’’ into ‘‘asthenosphere’’

with accompanying magmatism in the eastern continental China since

the Mesozoic [18, 22]. Note that previous studies have focused on

mantle melting and basaltic (basaltic–andesitic) magmatism, but we

stress here that the mantle-derived melts with liquidus temperature in

excess of 1100 �C will, on their way up, cause crustal melting and

granitoid magmatism. In fact, the widespread Mesozoic granitoids in

eastern China all resulted from crustal melting induced by mantle-

derived melts (e.g., [29, 38]). b Modified from Ref. [22] to elaborate

the crustal melting illustrated in (A) and to explain why the granitoids

show no systematic variation in space and time (Figs. 2–5). Fast

trench retreat under gravity resulted in the three-layered structure: the

paleo-Pacific slab left behind stagnantly in the mantle transition zone,

the continental China lithosphere passively drifting eastward (the

origin of continental drift as described in Ref. [22]) and the wedge-

suction [18] induced asthenosphere convection. The slab-derived

water in the form of incipient hydrous melt percolates upwards,

metasomatizes the upper mantle, and weakens/converts the basal

lithosphere into asthenosphere accompanied by melting of the being-

converted lithosphere/asthenosphere to produce basaltic melts. These

melts rise and underplate/intrude the crust, causing crustal melting for

the granitoids. That is, the crustal granitoid magmatism is ultimately

determined by the transition-zone slab dehydration, i.e., where there

is slab dehydration atop the transition zone there will be overlaying

crustal melting. Because the slab is stagnant but the lithosphere with

crust is moving, crustal melting occurs whenever and wherever it

moves over the dehydrating slab in the transition zone. Hence, the age

and location of a granitoid pluton is a surface/crustal expression of the

dehydrating transition-zone slab at that time and in that location, thus

giving no systematic granitoid distribution in time and space (Figs. 2–

5). Note that because continental drift is passive response to trench

retreat [22], the relative position of the ‘‘volcanic arc’’ immediately

above the subduction zone will not change throughout of the life span

of the subduction. c, d are modified from Green and co-authors [67,

68] to show the dry solidus (thick blue), water-saturated solidus with

[0.02 wt% H2O (thick pink) at P[*3 GPa and with [0.4 wt%

H2O (thick dashed light blue) at P\*3 GPa and amphibole

dehydration solidus (think pink) with *0.02–0.4 wt% H2O at

P\*3 GPa. The intraplate geotherms of mantle lithosphere beneath

ocean basins (thin dashed orange line) and cratons (thick red line) are

shown for reference relative to the adiabatic geotherm of the

asthenosphere with a mantle potential temperature of TP = 1430 �C
[68] although others prefer TP = 1350 �C to be more general (e.g.,

[69]). In D is the experimentally determined H2O storage capacity of

mantle peridotite rocks, largely controlled by the stability of the

hydrous pargasitic amphibole (P B *3 GPa, T B 1100 �C). This

means that in the upper mantle depths of *100–250 km, the

lithosphere can be stable so long as it is dry with bulk

H2O\ 0.02 wt%, i.e., the condition for the lithospheric mantle or

cratonic root stability. Note that at depths of 200–250 km, the

temperature difference between the dry solidus and wet solidus is on

the order of[300 K and it is thus physically difficult and practically

unlikely to weaken and thin the lithosphere by excess temperature that

is unavailable, but it is straightforward by addition of minute water

[18, 22], say[0.02 wt% or 200 ppm, to bring the mantle rock onto

the wet solidus, converting the basal lithosphere into the astheno-

sphere. For example, assuming ‘‘X’’ represents the stable deep part of

the eastern China continental lithosphere prior to the thinning,

addition of H2O derived from the transition zone (see above) would

make it well above the wet solidus, causing incipient melting and

transforming the basal lithosphere into asthenosphere
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5 Why did the Mesozoic subduction stop at ~100 Ma?

Niu et al. [42] demonstrate that subduction, once initiated

and continued, cannot stop and the only cause of subduc-

tion cessation is trench jam. The arrival of a sizable mass of

large compositional buoyancy at the trench will jam the

trench because it is too buoyant to subduct, thus stopping

subduction. This concept is well illustrated in a self-ex-

planatory set of cartoons using the buoyant oceanic plateau

of mantle plume origin as an example in Fig. 8. Among

demonstrative arguments, the history of the giant Ontong

Java Plateau in the Southwest Pacific provides a convinc-

ing case for its buoyant and unsubductable property [43–

45] and for its effective cause to change the subduction

polarity toward beneath it only a few million years after the

trench jam in the Southwest Pacific [42]. The Caribbean

Oceanic Plateau is another example of large buoyant and

unsubductable mass with seafloor subduction beneath it

from both Pacific and Atlantic sides [42]. It is important to

note that the oceanic plateau model illustrates in its clarity

the trench jam concept (Fig. 8), but micro-continents are

more buoyant [43, 44], unsubductable, and can thus be

more effective to cause trench jam and subduction cessa-

tion [42].

6 The continental shelf of East and South China Seas

as an exotic and unsubductable terrane

All the above observations, data analysis and reasoning

have inescapably led us to the conclusion, which is in

nature a testable hypothesis: The basement of continental

shelf of East and South China Seas is best understood as an

exotic massive terrane of large compositional buoyancy,

transported by the NW moving paleo-Pacific plate in the

Mesozoic (we call it ‘‘paleo-Pacific plate’’ rather than using

the possible yet unproven ‘‘Izanagi’’ plate [46]), and col-

lided at *100 Ma with the eastern China continental

margin. The collision jammed the trench, stopped sub-

duction, and thus ended the transition-zone slab dehydra-

tion induced mantle melting for basaltic melt as the heat

source for crustal melting, terminating the granitoid mag-

matism in the eastern continental China at *88 Ma. The

*100 Ma collision time is unconstrained (see above), but

is a reasonable estimate by assuming a *10 Myr time

period is required to allow complete dehydration (con-

strained by the transition-zone mineral stability) of the last

slab fragments for mantle melting, crustal melting and the

eastern continental China granitoid magmatism to last until

*88 Ma.

6.1 The nature of the East and South China Sea

continental shelf of exotic origin and the locus

of its collision with eastern continental China

The East China Sea (ECS) and South China Sea (SCS) are

geographic divisions, but their shelf basement is geologi-

cally the same. Their geographic separation by the Island

of Taiwan and Taiwan Strait has been a more recent geo-

logical event associated with the uplift of Taiwan in

response to the complex compression and subduction in the

region. Hence, we use continental shelf of China for the

entirety since the collision at *100 Ma. Despite some

published work in the old Chinese literature, we essentially

know very little about the nature and history of this exotic

terrane, but we do know predictably that it must not be the

same as the Cathaysia basement of Southeast China, must

be compositionally buoyant, and must have experienced

continued basal lithosphere thinning in the Cenozoic.

These ‘‘must’’ and ‘‘must not’’ represent our assertive

request for hypothesis testing. We cannot rule out that the

continental shelf basement of exotic origin could be an

oceanic plateau, but equally we cannot refute the possi-

bility that it may actually represent a micro-continental

mass. To help address this issue, we need first to locate the

locus (or the suture) of the collision taking place at

*100 Ma between the exotic terrane and the Cathaysia

Block in South and East China.

Figure 9 shows that the Southeast China costal line is an

arc (dashed red line), which in length and curvature is

similar to the India-Asia Collision Arc (solid red line). It

should be noted that the ‘‘arc shape’’ is determined by the

prior existing subduction zone/trench (hence the familiar

Island ‘‘arcs’’) although the collision with the entering plate

may modify the arc shape. Hence, the arc shape of the

Southeast China coastal line is not coincidental, but is

inherited from the prior subduction zone and trench. The

arc shape with contrasting elevation is also not coincidental

but indicative of collision with different intrinsic properties

on both sides. The entering Indian plate is flat with low

elevation relative to the receiving Tibetan Plateau ‘‘plate’’,

where the convergence has continued to this day since the

collision *55 Ma with thickened cratonic lithosphere

ensuring the India plate above sea level. In the case of the

Chinese continental shelf (CCS), the entering exotic plate

is anticipated to be also flat at the time of collision (re-

cently modified by back-arc opening, etc.) with low ele-

vation relative to the receiving Cathaysia Block (CB)

above sea level. Both CCS and CB are of low elevation

because of the thin lithosphere and the lack of the Hima-

laya-like range is consistent with being no continued con-

vergence since the collision at *100 Ma. To the north, the
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locus of the collision is hard to trace (dashed light blue line

with question marks; Fig. 9) because of the recent

(\20 Ma) tectonic reorganization associated with the

opening of the Sea of Japan.

The above analysis shows unavoidably that both the

Islands of Taiwan and Hainan are exposed constituents of

the exotic terrane geologically unrelated to the Cathaysia

Block in South China. Many researchers may disagree on

this unconventional reasoning, but there is practically no

convincing evidence at all that the geological record in

Taiwan is comparable to that of South China. In fact, a

recent study shows that the basement of the Hainan Island,

in particular in the Sayan area in the southern end, closely

resembles that of Western Australia rather than that of

South China [47]. We do not wish to emphasize this study

[47] supports our hypothesis (maybe not as yet), but stress

that ‘‘there are no facts, but interpretations’’ as quoted

above and that there are many more unknowns than

knowns that require our objective and open-minded

thinking to develop insights. Because our hypothesis has

huge implications, we advocate interested members to

work together to test the hypothesis.

6.2 Testing the hypothesis

Some detailed and thorough work to compare the geolog-

ical record from the Islands of Taiwan and Hainan with that

of the Cathaysia Block will be useful. However, basement

penetration drilling at selected sites on the shelf of South

China Sea, East China Sea, and perhaps Yellow Sea will be

essential (see Fig. 9). There are many industrial boreholes

drilling into the cover sediments on these shelves, but we

propose to work with the industries and IODP to select

ideal sites for deep and basement penetration drilling so as

to obtain the minimal information necessary to test the

hypothesis concerning the nature and history of the Chi-

nese continental shelf of exotic origin.

The hypothesis also means: (1) the basement of the

young (\15 Ma) Ryukyu Island Arc as well as the Oki-

nawa Trough are parts of the same exotic terrane, whose

study, including sampling outcrops of the land-side Ryu-

kyu Trench wall if possible will be useful; (2) South China

Sea was opened as a back-arc basin spreading system from

within the exotic terrane; thus, the basement of the several

archipelagos in the South China Sea is also ideal targets for

deep drilling.

7 Summary and broader implications

1. The exotic origin The basement of the continental

shelf of China is of exotic origin. It could be a fossil

oceanic plateau, but is more likely a sizable micro-

continent with large compositional buoyancy trans-

ported by, or along with, the paleo-Pacific plate in the

Mesozoic. It was too buoyant to subduct, thus col-

lided with the eastern margin of continental China,

jammed the trench and caused subduction cessation at

*100 Ma (Fig. 8). The locus (or suture) of the col-

lision is likely on the shelf in the vicinity of, and

parallel to, the Southeast China coast, whose arc

shape is inherited from that of the prior trench

(Fig. 9).

2. Testing the hypothesis The above is an unescapable

conclusion based on our analysis of the Jurassic–

Cretaceous granitoid distribution in space and time in

eastern China and insights gained from geological

record and physical principles. This conclusion is in

nature a hypothesis to test by basement penetration

drilling on the shelf of the East China Sea, South

China Sea and perhaps also the Yellow Sea (Fig. 9).

The origin and history of the South China Sea is at

present an international ‘‘hotspot’’ with concentrated

studies, but predictably, its opening as a back-arc

basin was initiated from the interior of the exotic

terrane. Hence, the basement of several archipelagoes

scattered in the South China Sea also needs selecting

for basement drilling.

3. The importance of testing the hypothesis Testing the

hypothesis (a) can provide insights into the plate

tectonic reconstruction of the Mesozoic western

Pacific in a global context, and (b) will also offer

us a fresh and open-minded understanding of the

continental geology of eastern China since the

Mesozoic. At present, the practical hindrance for

any further insight into the tectonomagmatic pro-

cesses of eastern China since the Mesozoic lies in

unraveling the nature and history of the basement of

the Chinese continental shelf.

4. Not an Andean-type margin The eastern continental

China in the Mesozoic may be considered as an

active continental margin as done by many, but it is

not an Andean-Type margin because the granitoids

do not define ‘‘magmatic arcs’’ at any given time.

Rather, the granitoids distribute randomly in space

and time in a wide zone in excess of [1000 km

(Figs. 2–5), which is most consistent with the

presence of a stagnant paleo-Pacific slab in the

mantle transition zone beneath the region. The

stagnant slab dehydrated and released water in the

form of hydrous melt that percolated through and

metasomatized the upper mantle, weakened the base

of the lithosphere while producing basaltic melt as

the heat source (also material contribution; Fig. 6)

for crustal melting and the granitoid magmatism

(Fig. 7).
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5. The lithosphere thinning not limited to the NCC

While destruction of the NCC is emphatically

discussed by the Chinese community, it is unam-

biguous that the lithosphere thinning is not limited to

the NCC, but rather extensive throughout the entire

eastern continental China in the Mesozoic as previ-

ously pointed out and as indicated by the granitoid

distribution (Figs. 2–5). A view going beyond the

NCC in a larger context will open our mind with

greater vision toward a genuine understanding of the

tectonomagmatic evolution of the eastern continental

China since the Mesozoic.

6. Timing of the lithosphere thinning If the granitoid

magmatism was genetically associated with the

lithosphere thinning as we argue and illustrate

(Fig. 7), then, by inference, the intensity of the

granitoid magmatism manifests the intensity of the

lithosphere thinning. It follows that the lithosphere

thinning began *190 Ma until *88 Ma, and largely

completed by *110 Ma with the peak at *140 Ma

(Fig. 3).

7. Largely crustal reworking As shown by the Nd

isotope compositions, the Mesozoic granitoids of

eastern China are dominated by a mature crustal

source with[50 % samples having eNd(t)\ –9.7 and

95 % samples having eNd(t)\ 0 (Fig. 6), i.e., their

petrogenesis is consistent with crustal melting (or

crustal re-working) induced by heat, with some

material contribution, of mantle-derived basaltic

melts (Figs. 6, 7). This has implications for the

thinner-than-normal mafic lower crust in the eastern

continental China as recognized by Gao et al. [48]

without having to invoke mafic lower crust founder-

ing into the asthenospheric mantle [9], which is

physically not straightforward given the presence and

protecting effect of the mantle lithosphere [18, 19].

Nevertheless, the recognition by Ref. [48] is impor-

tant, and the intriguing question put forward has been

largely overlooked. This question should be ade-

quately addressed as we suggest here by quantitative

evaluation of the melting processes and physical

contributions of mantle mafic melts to the crustal

level in the Mesozoic.

8. The *40 Myr magmatic gap and the transform

boundary As we argue, the paleo-Pacific subduction

offshore southeast coast of the continental China

(Fig. 9) ceased at *100 Ma with the magmatism

continuing to *88 ± 2 Ma, yet the present-day

western Pacific subduction did not begin until

*50 Ma [24, 25] and the Ryukyu subduction began

even later (\15 Ma). There is thus a *40 Myr gap

without subduction-related magmatism, which is

unexpected from the simple model prediction that a

new subduction should develop in the back of the

buoyant exotic terrane (The stippled rectangle in

Fig. 8c) whether it is an oceanic plateau or a micro-

continent [42]. However, the absence of magmatism

can also be understood if what is developed there is

not a new subduction zone but a transform fault. We

predict that from *100 to *50 Ma, the paleo-

Pacific plate was in transform contact with the

eastern Asian continental plate at the eastern margin

of the newly accreted Chinese continental shelf of

exotic origin (see below).

9. Re-orientation of the Pacific plate motion from NW to

NNW at *110 Ma Niu et al. [42] show that trench

jam can cause the Pacific plate to change its motion

toward where subduction was happening. We predict

that the Pacific plate changed its course at *100 Ma

from toward NW to toward NNW where active

subduction was occurring at the western Aleutian

trench (or its predecessor) as inferred from the age-

progressive Emperor Seamount Chain of the Hawai-

ian hotspot origin, whose oldest yet unsubducted

seamounts are Meiji and Detroit of *82 Ma. This

would produce a transform plate boundary between

the NNW moving Pacific plate and the eastern Asian

continental plate (see above; also the stippled

bFig. 8 Cartoons significantly modified from Ref. [42] to use the

oceanic plateau model to explain the concept of trench jam, i.e., the

oceanic plateau of mantle plume head origin is massive, composi-

tionally buoyant and is thus unsubductable (a), whose arrival at

trenches will jam the trench and stop subduction (b). As a result,

subduction-related magmatism ceases to continue although dehydra-

tion of the transition-zone stagnant slab subducted earlier can

continue its role in causing H2O-induced mantle melting [18, 22]

and crustal anatexis for granitoid magmatism (left-hand side of the

cartoons) for some time (up to 10 Myrs?). New subduction can thus

begin in the back at the compositional buoyancy contrast indicated

with stippled rectangle (c) [22, 42]. Note that the oceanic plateau

model is convenient to explain the concept of trench jam, but micro-

continents of sizable mass are compositionally more buoyant and

more effective such as geological terrenes and blocks that constitute

the Greater Tibetan Plateau [70–73]. The basement of the Chinese

continental shelf is predicted to be such an exotic terrain in (c).
Because of the trench jam, the Pacific plate changed its motion toward

NNW direction at *100 Ma, making the Pacific plate in transform

contact with the eastern Asian plate (eastern China with the shelf of

exotic origin) at the compositional buoyancy contrast (the stippled

rectangle; in (c)) until *50 Ma when the present-day western Pacific

subduction began. Since *50 Ma, the Pacific plate may continue to

move in the NNW direction as manifested by the age-progressive

Emperor Seamount Chain (SMC) of Hawaiian hotspot origin, but now

the contact with the Asian plate changed from transform to oblique

(low angle) subduction until *43 Ma. At *43 Ma, a hypothetical

oceanic plateau (‘‘Hawaiian plume head’’?) jammed the trench,

causing the Pacific plate to re-orientate its motion in the NW direction

and to subduct beneath the present-day western Pacific subduction

trenches as manifested by the age-progressive Hawaiian SMC of

Hawaiian hotspot origin [42, 74]
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rectangle in Fig. 8c) until *50 Ma when the present-

day western Pacific subduction began. At this time,

the Pacific plate may continue its NNW course, but

this transform boundary of compositional buoyancy

contrast may have just turned into a trench with

oblique subduction until *43 Ma.

10. Re-orientation of the Pacific plate motion from NNW

to NW at *43 Ma Collision of the buoyant Hawaiian

mantle plume head (oceanic plateau) at*43 Ma with

the predecessor of the Aleutian–Kamchatka trench

jammed that trench, resulting in the re-orientation of

Pacific plate motion by 60� in the present NW course

and its subduction into the western Pacific trench as

manifested by the age-progressive Hawaiian Sea-

mount Chain of the Hawaiian hotspot origin (see Ref.

[42, 74] for details). This analysis needs considering

in future plate tectonic reconstruction of the region in

a global context.

11. Some intriguing questions exist We continue to

consider these questions as important elements of

our hypothesis testing and we also advocate that the

community objectively discuss these issues. (a) The

reported 88 ± 2 Ma and older granitoids from Japan

and South Korea (Fig. 2) are expected because they

are close to the eastern margin of the continental

China at that time long before the opening of the Sea

of Japan at\*20 Ma [49]. (b) The 88 ± 2 Ma old

granitic gneisses exposed in the Central Range in

Taiwan are coeval with the last episode of the

granitoid magmatism on the eastern continental

China
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Fig. 9 Portion of the world topographic map, highlighting the continental China and its adjacent land and seas (Google Map, 2015) to illustrate

several key points: (1) We emphasize the testable hypothesis that the Chinese continental shelf (shelf basement of East China Sea and South

China Sea altogether) is of exotic origin, which as a large ocean plateau or more likely micro-continent transported with the northwestward

moving paleo-Pacific plate that subducted in a paleo-Trench in the vicinity of continental China; (2) arrival of the buoyant and unsubductable

oceanic plateau or micro-continent at the trench jammed the trench (see Fig. 8); (3) the exact trench location is unknown, but is likely parallel to

and in the vicinity of the South-East China costal line indicated by the thick red dashed line, which is in length and arc similar to the India-Asia

Collision Arc (the thick red line); (4) the collision arc in the northern section is hard to locate (see the light blue dashed line with question marks)

because of the recent (\20 Ma) tectonic reorganization associated with the opening of the Sea of Japan. The yellow ‘‘drop’’ dots are granitoid

sample locations with ages in the literature, and we have sampled many of them for testing the hypothesis by comparing intrinsic geochemical

characteristics of these granitoid samples and the basement rocks of the SCS and ECS shelf. The latter can only be obtained by basement

penetration drilling through working with industries and the IODP community
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China, but whether they share a similar origin

remains to be investigated. (c) We also note that

110–88 Ma old granitoids on the Island of Hainan are

common, which are also coeval with the last episodes

of the granitoid magmatism on the eastern continental

China, but more detailed petrology, geochronology

and isotope geochemistry on these and many other

samples are underway in our effort in testing aspects

of the hypothesis (see Fig. 9 for sample locations).

(d) Of particular interest is the recently reported

*73 Ma granitoid from Longlou at the NE corner of

the Hainan Island [50], whose geological significance

is under consideration. (e) We also note that a recent

study [51] suggests on the basis of detrital zircon age

spectrum analysis that some pre-Middle Jurassic

sediments from Southwest Japan may have come

from South China, in particular the Cathaysia Block

(vs. anticipated North China). This is actually

straightforward because Southwest Japan has the

closest proximity (see Fig. 2) to the northern section

of the Cathaysia Block before the separation of

Japanese Islands from the continental Asia recently

(\*20 Ma). (f) In addition, we consider the neces-

sity of discovering the possible presence of remnant

Mesozoic Pacific slab in the mantle transition zone or

deeper somewhere. This is not straightforward

because it may no longer be detected seismically

because of adequate thermal equilibration with the

ambience. However, if it existed at all, its fragments

may lie in the mantle below or more likely far to the

west of the western continental China because the

slabs must be stagnant in the mantle transition zone

(in geologically reasonable length of time) whereas

the continental lithosphere must have drifted fast to

the east since the Mesozoic in response to western

Pacific trench retreat (see Ref. [22]). (g) Importantly,

our prediction for the transform boundary from*100

to *50 Ma is conceivable with logical reasons and

ability to explain the magmatic gap between *88

and *50 Ma. One possibility is that the predicted

transform may be the predecessor of the present-day

subduction boundaries of the Japanese Trench, the

Ryukyu Trench (although it is younger) and the

Philippines Trench, but all these must be verified

through collecting data and data-based plate recon-

struction with particular effort to understand the

origin and histories of the Philippines Plate as

attempted in the literature [49, 52, 53]. (h) The

younger ages (as young as * 70 Ma?) of some

volcanic rocks in southeast China [29], if verified to

be correct, may reflect post-collisional ‘‘memory’’

without affecting the statistical significance of the *
88 ± 2 Ma magmatic termination (Fig. 3), but the

collision timing of * 100 Ma can be refined with

more reliable data becoming available.

12. We emphasize again that the bottleneck toward

further insights into the plate tectonic reconstruction

and geological evolution of the western Pacific and

continental China since the Mesozoic lies in the

genuine understanding of the nature and histories of

the continental shelf of China (the same shelf

basement beneath East and South of China Seas).

The latter is also required in order to truly understand

the origin and histories of the South China Sea.
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