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Abstract Mafic magmatic enclaves (MMEs) are abundant in
Baojishan syn-collisional granitoids located in the eastern sec-
tion of the North Qilian Orogen. Zircon U-Pb ages of the host
granodiorite (433.7±3.4 Ma) and their MMEs (431.6±
2.8 Ma) are the same as the time of the Qilian ocean closing
and continental collision at ∼440–420 Ma, indicating that the
granitoids represent a magmatic response to the collision be-
tween the Qilian-Qaidam block and the Alashan block. The
MMEs have the same mineralogy as the host granodiorite
except that they are more abundant in mafic phases (e.g.,
amphibole and biotite) and thus have higher heavy rare earth
element (HREE) abundances. Both the host granodiorite and
theMMEs have light REE-enriched patterns and relatively flat
HREE patterns (i.e., [Dy/Yb]N=1–1.1). They are enriched in
large ion lithophile elements (LILEs; e.g., Rb, K, Pb) and
depleted in high field strength elements (HFSEs; e.g., Nb,
Ta, Ti) and show a varying Sr anomaly (i.e., Sr/Sr*=0.9–
2.2) for the host and a negative Sr anomaly (i.e., Sr/Sr*=
0.4–0.6) for the MMEs. Both the host granodiorite and the

MMEs have overlapping and indistinguishable Sr-Nd-Hf iso-
topic compositions (87Sr/86Sr(i)=0.7067–0.7082, εNd(t)=
−3.9–−3.2, εHf(t)=1.0–14.7). The extremely high εHf(t)=
14.7 of sample BJS12-06MME likely results from the calcu-
lation due to nugget effect of zircons because of the unexpect-
edly high Hf (3.53 ppm) and too high Zr (128 ppm). All these
characteristics are fully consistent with the MMEs being of
cumulate origin formed at earlier stages of the same magmatic
systems rather than representing mantle melt required by the
popular and alleged magma mixing model. The radiogenic Sr
and unradiogenic Nd (εNd(t) <0) indicate the contribution of
mature continental crust, while variably radiogenic Hf
(εHf(t)>0) for both the MMEs and their host granodiorite
manifest the significant mantle input. The apparent
decoupling between Nd and Hf isotopes are likely caused by
partial melting of recycled terrigenous sediments and the re-
maining part of the North Qilian ocean crust under the am-
phibolite facies conditions during the collision.

Introduction

Mafic magmatic enclaves (MMEs) are common in calc-
alkaline granitoids and are considered as offering key infor-
mation towards understanding the petrogenesis of such gran-
itoids (Didier 1973; Barbarin and Didier 1991). Detailed field
and petrographic features ofMMEs have been documented by
many investigators since the descriptive work by Phillips
(1880). When studying the Sierra Nevada batholith, Pabst
(1928) described the MMEs as Bautoliths^, meaning that the
MMEs may be Bcogenetic^ or part of the same system. Based
on geochemical data, Dodge and Kistler (1990) confirmed
Pabst’s (1928) Bautoliths^ hypothesis and further proposed
that MMEs in central Sierra Nevada were formed from the
enclosing magma by early crystallization/accumulation of
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plagioclase, hornblende and biotite etc. Studies over the years
(e.g., Vernon 1983; Didier 1987; Dorais et al. 1990; Castro
et al. 1990; Barbarin and Didier 1991; Barbarin 2005; Chen
et al. 2009a, b, 2013; Ma et al. 2013) have recognized the
possible relationship of MMEs with some mafic dikes in time
and space, which have led to the proposal of a genetic link
between them (see Barbarin 2005) although this view ignores
the Bautoliths^ nature of theMMEswith the host (see Niu et al.
2013). As a result, MMEs have been popularly interpreted as
evidence of magma mixing between mantle derived basaltic
melt represented by the MMEs and the crust-derived felsic
melt represented by the granitoid host (e.g., Chen et al.
2009a). Chappell (1996) and co-workers advocated a restitic
origin for MMEs in granitoids from southeastern Australia
(White and Chappell 1977; Chen et al. 1989; Chappell
1996), meaning that MMEs represented residues of partial
melting. Nevertheless, the origin of MMEs remains a subject
of debate (Dahlquis 2002; Barbarin 2005; Niu et al. 2013).

The North Qilian orogenic belt (NQOB) at the northern
margin of the Tibetan Plateau is a type suture zone of seafloor
subduction and continental collision (Song et al. 2013). A
general feature of the syncollisional granitoids in the NQOB
is the presence of abundant MMEs of varying size dispersed
randomly or in certain patterns (e.g., Niu et al. 2013), which
offers an exceptional opportunity to study the petrogenesis of
syncollisional granitoids and MMEs in orogenic belt. In this
paper, we present a detailed case study of MMEs and the host
Baojishan granodiorite in the eastern section of the NQOB.
We critically evaluate the existing hypotheses by integrating
petrology, zircon U-Pb geochronology, whole-rock major-
and trace-element analysis, and Sr-Nd-Hf isotopic geochem-
istry. We conclude that the MMEs in this granodiorite do not
provide evidence for magma mixing nor restite unmixing.
Instead, we propose, on the basis of physical and chemical
evidence, that the MMEs represent disturbed pieces of basal
cumulate pile in response to the dynamics of newly
replenished magmas as hypothesized by Niu et al. (2013).

Geological setting and petrography

The NQOB lies between the Alashan Block to the northeast
and the Qilian Block to the southwest, and is offset to the
northwest by the Altyn-Tagh Fault (Fig. 1a; e.g., Song et al.
2006, 2013). The NQOB is an Early Paleozoic suture zone,
containing varying petrotectonic units formed at ridges,
trenches, volcanic arcs and back arc systems (Xia et al.
2003). It comprises three subunits, (1) the southern ophiolite
belt, (2) the middle arc magmatic belt and (3) the northern
back-arc basin ophiolite-volcanic belt (Fig. 1a; Xia et al.
2003, 2012; Xia and Song 2010; Wu et al. 2011; Song et al.
2013; Chen et al. 2014). The well-preserved southern
ophiolite subbelt extends from Aoyougou in the northwest,

via Yushigou, Dongcaohe, to Yongdeng in the southeast, in-
dicating seafloor spreading of the Qilian Ocean during ∼560–
500 Ma (Xiao et al. 1978; Shi et al. 2004; Tseng et al. 2007;
Song et al. 2009, 2013; Chen et al. 2014).

The Baojishan (BJS) granodiorite pluton is about 50 km2 in
size and located in the eastern segment of the NQOB and the
northern part of the magmatic arc belt (Fig. 1a). It makes up a
∼180 kmNW-SE trending granitoid belt including Qumushan
granodiorite (QG), Machangshan quartz diorite (MQD) and
Laohushan quartz diorite (LQD) (Fig.1a) (Wang et al. 2006,
2008). It lies approximately 12 km to the southwest of Baoji
town (Fig. 1a, b). The Baojishan (BJS) pluton intrudes the
Ordovician sedimentary and metamorphic rocks of the
Yingou Group (Fig. 1b) with a remarkably baked contact. It
contains abundant MMEs. Our study focuses on the petrogen-
esis and implications of the MMEs by comparing them with
their immediate host rocks.

The BJS pluton contains abundant MMEs of varying size
(a few to 10s of centimeters) and shape in sharp contact with
the granitoid host. The MMEs are dioritic and have the same
mineralogy as the host granodiorite except that they are more
abundant in mafic phases (e.g., amphibole and biotite) and
finer-grained (Fig. 2a and b). For example, the MMEs contain
plagioclase (∼35–40 %), amphibole (∼40–50 %), biotite (∼5–
15 %), quartz (∼5–20 %), minor K-feldspar and accessory
minerals such as apatite, sphene, zircon and Fe-Ti oxides. In
contrast, the host granitoids contain less mafic phases (∼5–
10 % amphibole, ∼ 3∼10 % biotite) and more felsic minerals
(e.g., ∼40–50 % plagioclase, ∼35–45 % quartz) with similar
accessory minerals. The MMEs show no chilled margins and
textures of crystal resorption and reactive overgrowth, but
mainly exhibit porphyritic-like textures, in which the amphi-
bole crystals vary from euhedral to subhedral, indicating that
they may represent concentrations of dense, early-formed
phases (see Reid and Hamilton 1987); some plagioclase crys-
tals show clear zoning.

Analytical methods

Zircon U-Pb dating

Zircon separation was done in laboratory of the Langfang
Institute of Regional Geological Survey using a combined
method of heavy liquid, magnetic and manual separation un-
der a binocular. The selected zircons were set in an epoxy
mount before polished to expose zircons in half depth.
Cathodoluminescence (CL) images were taken at China
University of Geosciences in Wuhan (CUGW), to examine
the internal structure of individual zircon grains. Zircon U-
Pb dating was done using LA-ICP-MS at CUGW. Laser sam-
pling was performed using a GeoLas 2005. An Agilent 7500a
ICP-MS instrument was used to acquire ion-signal intensities.
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Fig. 2 Photographs showing the
Baojishan granodiorite with mafic
magmatic enclaves (MMEs). a
and b showing the sharp contact
of MMEs with their host
granodiorite, and MMEs are
finer-grained than the host; b, c
and d showing the same
mineralogy between the host
granodiorite c and their MMEs d
except that the MMEs have
greater mafic mineral modes
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Helium was applied as a carrier gas. The laser spot size was
32 μm. Zircon 91500 was used as external standard for U-Pb
dating (Wiedenbeck et al. 1995), and analyzed twice between
every 5 unknown analyses. NIST610 glass was used as an
external standard to normalize U, Th and Pb concentrations
of unknowns. The detailed analytical procedure follows Liu
et al. (2010). The ages were calculated by using an in-house
software ICPMSDataCal (ver. 8.0) (Liu et al. 2008). Common
Pb correction was applied using the method of Andersen
(2002). Age calculations and concordia plots were made using
Isoplot (Ludwig 2003).

Mineral compositions

Mineral chemistry was determined using a JXA-8100 micro-
probe at Chang’an University, China. The operating condi-
tions were 15 kV accelerating potential, probe current of
10 nA and beam diameter of 1 μm. The analytical details are
following the quantitative analysis of silicate minerals by elec-
tron probe microanalysis of State Standard of the People’s
Republic of China (GB/T 15617–2002).

Major and trace elements

The whole-rock major and trace elements were determined at
China University of Geosciences in Beijing (CUGB). Whole-
rock major element oxides were analyzed using a Leeman
Prodigy inductively coupled plasma-optical emission spec-
trometer (ICP-OES). Whole-rock trace elements were ana-
lyzed using an Agilent-7500a ICP-MS. Sample powders were
digested using HF+HNO3 in a high-pressure jacket equipped
Teflon beaker in an oven for 48 h to ensure complete
digestion/dissolution. Rock standards GSR-1, GSR-3
and AGV-2 (US Geological Survey), and GSR-1 and
GSR-3 (National geological standard reference materials of
China) were used to monitor the analytical accuracy and pre-
cision. The analytic details and precisions are given in Song
et al. (2010).

Whole-rock Sr-Nd-Hf isotopes

Whole-rock Sr-Nd-Hf isotopic analyses were done in the
Radiogenic Isotope Facility at the University of Queensland,
Australia. The rock powders were dissolved in a mixture of
double-distilled concentrate HNO3 and HF, and dried on a hot
plate at 80 °C. After converting any fluoride to nitrate, the
dried residue was dissolved with 3 ml 2 N HNO3 and 1.5 ml
was loaded onto a stack of Sr-spec, Thru-spec and LN-spec
resin columns to separate Sr, Nd, and Hf from the matrix,
using a streamlined procedure modified after Mikova and
Denkova (2007) and Yang et al. (2010). All measured
87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf ratios were normal-
ized to 86Sr/88Sr =0.1194, 146Nd/144Nd=0.7219 and

179Hf/177Hf=0.7325, respectively. Total procedural blanks
are ∼65, 60, and 16 pg for Sr, Nd and Hf, respectively.
Analyses of NBS987 standard run during the same period
gave 87Sr/86Sr=0.710249±17 (n=18, 2σ). In the course of
143Nd/144Nd and 176Hf/177Hf analysis, the in-house Nd stan-
dard, Ames Nd Metal and 10 ppm Hf ICP solution from
Choice Analytical were used as instrument drift monitors,
respectively. This in-house Nd Metal and Hf standards were
cross-calibrated against the JNdi-1 Nd international standard
and the JMC-475 Hf international standard, respectively.
Analyses of in-house Nd standard gave 143Nd/144Nd=
0.511966±12 (n=24, 2σ), corresponding to a mean value of
0.282160±6 (n=16, 2σ) for JNdi-1 standard. Analyses of in-
house Hf standard yielded a mean 176Hf/177Hf of 0.282146±
12 (n=31, 2σ). The values of USGS reference materials JG-3
and BHVO-2 run with our samples are given in Appendix
Table 7, which are consistent with the reported reference
values (GeoREM, http://georem.mpch-mainz.gwdg.de/).
Analytical details for sample digestion and Sr, Nd and Hf
elemental column separation procedures are given in Guo
et al. (2014).

Results

Zircon U–Pb ages

Two samples (i.e., a host-MME pair) were dated using zircon
LA-ICP-MS U-Pb methods and the results are given in
Table 1. In CL images (Fig. 3a), zircons from the host grano-
diorite (BJS12-04host) are transparent and colorless, mostly
euhedral elongated crystals of 100–200 μm in length with
length/width ratios of ∼1:1–2:1 and show clear oscillatory
zoning. Zircons from the host granodiorite have moderate
Th (36–112 ppm), U (95–203 ppm), and Th/U ratios (0.32-
0.59), which is consistent with being of magmatic origin
(Hoskin and Schaltegger 2003). After rejecting discordant
ages, zircons from host granodiorite yield a 206Pb/238U mean
age of 433.7±3.4 Ma (1σ, n=13, MSWD=0.23, Fig. 4a),
representing the crystallization age (∼430Ma) of the granitoid
host.

Zircons from the MMEs are transparent and colorless,
mostly euhedral elongated crystals of 150–200 μm in length
with length/width ratios of about 1:1–2:1, also showing clear
oscillatory zoning in CL images (Fig. 3b). The Th content in
these zircons ranges from 73 to 228 ppm and U from 173 to
369 ppm with Th/U ratios of 0.32–0.7. After rejecting discor-
dant ages, zircons from the MMEs yield a 206Pb/238U mean
age of 431.6±2.8 Ma (1σ, n=13, MSWD=0.37, Fig. 4b),
which is identical to the age of the host within analytical error,
indicating that both the MMEs and the host formed at the
same time and may have a genetic link.
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Mineral compositions

Carefully selected plagioclase and amphibole crystals were
analyzed for major element composition using electron micro-
probe, in which Fe2+ and Fe3+ values of amphibole were re-
calculated after Lin and Peng (1994).

Plagioclase

Plagioclase from theMMEs and their host granodiorite exhibit
similar compositions with a large range of anorthite content
(Table 2), and display similar normal zoning (Fig. 5a, b, c).
Resorption textures or reversed zoning in plagioclase are often

taken as reflecting changes in plagioclase stability brought
about by magma mixing (e.g., Hibbard 1981), particularly
when a new, more calcic plagioclase grows over the resorption
zones (e.g., Vernon 1983, 1991; Pietranik and Koepke 2009,
2014; Chen et al. 2009a, b, 2013; Ma et al. 2013). For exam-
ple, when studyingMMEs from the TaihangMesozoic orogen
in north China craton, Chen et al. (2009a, b) proposed a pro-
cess of magma mixing for their origin based on the observa-
tion of euhedral overgrowths of high-Ca plagioclase over low-
Ca plagioclase. However, the lack of reversed zoning in our
study suggests that mixing of compositionally different
magmas is insignificant (or unlikely) in the petrogenesis of
the MMEs and their host granodiorite we study.

Table 1 LA-ICP-MS zircon U-Pb data for a host granodiorite (BJS12-04host) and a mafic magmatic enclave (BJS12-04MME)

Spot Concentrations (ppm) Ratios Age (Ma)

Pb Th U Th/U 207Pb 1 σ 207Pb 1 σ 206Pb 1 σ 207Pb 1 σ 207Pb 1 σ 206Pb 1 σ
206Pb 235U 238U 206Pb 235U 238U

host (BJS12-04host)

01 20.63 60.13 185.6 0.3 0.0531 0.0024 0.5159 0.0234 0.0698 0.0010 331.5 101.8 422.4 15.7 434.9 6.0

02 19.75 58.08 174.6 0.3 0.0552 0.0024 0.5323 0.0223 0.0702 0.0011 420.4 99.1 433.3 14.8 437.2 6.5

03 17.04 53.56 137.0 0.4 0.0532 0.0028 0.5091 0.0277 0.0692 0.0010 338.9 120.4 417.8 18.6 431.6 6.1

04 32.07 111.5 202.6 0.6 0.0557 0.0026 0.5397 0.0243 0.0705 0.0010 438.9 97.2 438.2 16.0 439.3 5.9

05 25.32 75.89 136.9 0.6 0.0632 0.0037 0.6326 0.0372 0.0730 0.0012 716.7 124.1 497.7 23.1 454.2 7.1

06 21.65 62.47 170.2 0.4 0.0540 0.0026 0.5147 0.0250 0.0692 0.0010 372.3 107.4 421.6 16.8 431.5 6.2

07 20.14 58.92 165.8 0.4 0.0527 0.0027 0.5092 0.0272 0.0700 0.0011 316.7 116.7 417.9 18.3 435.9 6.4

08 21.76 67.04 188.1 0.4 0.0581 0.0026 0.5551 0.0234 0.0694 0.0009 600.0 96.3 448.3 15.3 432.3 5.6

09 20.47 66.65 148.4 0.4 0.0558 0.0025 0.5342 0.0238 0.0690 0.0009 442.6 98.1 434.6 15.7 430.0 5.3

10 21.47 78.73 134.1 0.6 0.0586 0.0035 0.5577 0.0325 0.0693 0.0011 550.0 133.3 450.0 21.2 431.8 6.4

11 23.82 72.93 183.1 0.4 0.0594 0.0029 0.5740 0.0279 0.0695 0.0011 588.9 102.8 460.6 18.0 433.1 6.4

12 15.57 43.40 128.4 0.3 0.0601 0.0034 0.5949 0.0329 0.0728 0.0012 609.3 123.0 474.0 20.9 453.0 7.4

13 16.39 56.52 118.4 0.5 0.0601 0.0036 0.5776 0.0349 0.0697 0.0012 605.6 129.6 462.9 22.5 434.6 7.1

14 17.68 53.54 138.5 0.4 0.0569 0.0032 0.5471 0.0298 0.0702 0.0012 487.1 119.4 443.1 19.5 437.4 7.1

15 11.80 36.10 94.73 0.4 0.0540 0.0032 0.5082 0.0297 0.0690 0.0011 368.6 135.2 417.2 20.0 430.2 6.8

MME (BJS12-04MME)

01 27.73 82.33 207.9 0.4 0.0582 0.0023 0.5602 0.0218 0.0701 0.0010 600.0 85.2 451.6 14.2 436.9 5.8

02 40.73 138.6 281.4 0.5 0.0570 0.0021 0.5398 0.0189 0.0690 0.0008 500.0 79.6 438.3 12.5 430.0 5.0

03 62.18 227.8 323.5 0.7 0.0578 0.0020 0.5478 0.0175 0.0692 0.0008 524.1 69.4 443.5 11.5 431.2 4.9

04 34.01 109.9 226.7 0.5 0.0589 0.0026 0.5601 0.0246 0.0695 0.0008 561.1 98.1 451.6 16.0 432.9 4.8

05 23.13 73.40 173.0 0.4 0.0573 0.0030 0.5384 0.0273 0.0684 0.0008 501.9 114.8 437.3 18.0 426.6 5.1

06 28.94 90.91 223.2 0.4 0.0578 0.0022 0.5518 0.0215 0.0689 0.0008 520.4 88.0 446.2 14.1 429.6 5.0

07 59.26 215.4 314.9 0.7 0.0578 0.0018 0.5511 0.0166 0.0692 0.0008 520.4 68.5 445.7 10.9 431.0 4.7

08 34.18 112.9 204.9 0.6 0.0575 0.0026 0.5618 0.0254 0.0702 0.0008 509.3 98.1 452.7 16.5 437.6 5.0

09 28.07 80.18 223.6 0.4 0.0621 0.0026 0.6018 0.0260 0.0700 0.0010 677.5 90.7 478.4 16.5 436.2 5.9

10 31.98 102.2 211.0 0.5 0.0574 0.0026 0.5517 0.0245 0.0696 0.0010 509.3 98.9 446.1 16.0 433.6 6.0

11 51.94 175.3 369.7 0.5 0.0586 0.0021 0.5679 0.0213 0.0696 0.0009 550.0 75.0 456.6 13.8 433.8 5.2

12 36.00 106.1 330.1 0.3 0.0583 0.0022 0.5630 0.0228 0.0693 0.0009 542.6 89.8 453.5 14.8 431.9 5.4

13 24.74 80.67 187.6 0.4 0.0617 0.0032 0.5952 0.0316 0.0695 0.0010 664.8 112.9 474.2 20.1 433.4 6.3

14 39.00 137.7 253.1 0.5 0.0530 0.0022 0.5070 0.0204 0.0688 0.0008 331.5 92.6 416.4 13.8 429.1 4.7

15 37.30 135.2 246.0 0.5 0.0548 0.0022 0.5204 0.0204 0.0688 0.0009 405.6 86.1 425.4 13.6 428.7 5.1
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Amphibole

Following Leake et al. (1997), amphiboles from the MMEs
and their host granodiorite are compositionally the same and
can be classified as calcic magnesiohornblende with highMg#

(0.58-0.67) [Mg#=Mg/(Mg+Fe2+)] (Table 3, Fig. 6). They
have medium SiO2 (44.3∼47.1 wt.%), and low TiO2 (0.57–
1.45 wt.%), Na2O (1.16–1.92 wt.%) and K2O (0.26–

1.92 wt.%). All the amphibole crystals of the MMEs and
their host granodiorite are compositionally uniform without
zoning.

Bulk-rock major and trace elements

Major and trace elements data of whole rocks are given in
Table 4. On the total alkalis-silica (TAS) diagram (Fig. 7a),
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the host rock samples plot in the granodiorite field. The
MMEs plot in the fields of diorite, gabbro and gabbroic dio-
rite, but they are petrologically amphibole-rich mafic-diorite
with no pyroxene present. The host granodiorite samples are
calc-alkaline (Fig. 7b) and metaluminous rocks with A/CNK
of 0.96–1.0 (Fig. 7c), whereas the MMEs are high-K calc-
alkaline to calc-alkaline (Fig. 7b) and metaluminous with

A/CNK of 0.67–0.8 (Fig. 7c). The host granodiorite samples
have relatively high SiO2 (62.5–66 wt.%), Na2O (3.36–
3.42 wt.%), Al2O3 (15.5–16.8 wt.%), Mg# (0.55–0.59;
Mg#=Mg/[Mg+Fe2+]), Na2O/K2O (1.7–2.4). The MMEs on
the other hand have low SiO2 (52.95–58.45 wt.%), high
Fe2O3, MgO, CaO and similar Mg# (0.57–0.59). They both
have high Na2O/K2O ratios (1.7–2.4 for the host and 1.7–2.2

Table 2 Microprobe analysis of plagioclase in the host granodiorites and the mafic magmatic enclaves

Spot SiO2 Al2O3 CaO Na2O K2O Total Si Al Ca Na K Sum An

host (BJS12-08host) Fig. 5a

1.1 56.2 27.4 9.5 6.1 0.07 99.4 2.57 1.41 0.47 0.54 0.00 5.00 46

1.2 57.5 26.2 8.4 6.9 0.24 99.4 2.63 1.34 0.41 0.61 0.01 5.01 40

1.3 56.8 27.1 9.5 6.2 0.17 99.8 2.59 1.38 0.47 0.55 0.01 5.00 46

1.4 56.6 26.6 9.1 6.5 0.12 99.0 2.60 1.37 0.45 0.58 0.01 5.00 43

1.5 56.4 27.2 9.6 6.3 0.12 99.7 2.58 1.40 0.47 0.56 0.01 5.01 45

1.6 56.8 27.2 9.2 6.5 0.07 99.9 2.59 1.39 0.45 0.57 0.00 5.01 44

1.7 56.2 25.1 7.9 6.5 0.05 95.8 2.65 1.33 0.40 0.59 0.00 4.98 40

1.8 60.1 25.1 6.9 7.9 0.20 100.5 2.71 1.27 0.33 0.69 0.01 5.01 32

1.9 58.1 26.0 8.2 7.1 0.20 99.8 2.64 1.33 0.40 0.63 0.01 5.01 39

1.1 60.2 25.7 6.9 7.7 0.14 100.8 2.70 1.29 0.33 0.66 0.01 4.99 33

1.11 57.2 26.6 9.1 6.2 0.14 99.4 2.61 1.36 0.45 0.55 0.01 4.98 44

host (BJS12-04host) Fig. 5b

1.1 58.6 25.7 7.5 7.6 0.30 99.8 2.66 1.31 0.36 0.67 0.02 5.02 35

1.2 53.9 28.7 11.5 5.2 0.24 99.7 2.49 1.48 0.57 0.46 0.01 5.01 54

1.3 55.1 27.7 10.5 5.8 0.22 99.7 2.54 1.43 0.52 0.52 0.01 5.01 49

1.4 57.9 26.5 8.5 6.5 0.22 99.8 2.63 1.35 0.42 0.57 0.01 4.98 42

1.5 55.7 27.9 10.2 5.9 0.20 100.2 2.54 1.43 0.50 0.52 0.01 5.01 48

1.6 60.8 24.8 6.3 8.3 0.12 100.4 2.73 1.25 0.30 0.72 0.01 5.01 29

1.7 54.6 28.1 11.0 5.6 0.16 99.6 2.51 1.45 0.54 0.49 0.01 5.01 52

1.8 56.9 27.1 9.2 6.5 0.21 100.1 2.59 1.38 0.45 0.57 0.01 5.01 43

1.9 57.4 26.6 8.7 6.8 0.16 99.8 2.61 1.36 0.42 0.60 0.01 5.01 41

MME (BJS12-04MME) Fig. 5c

1.1 55.0 27.4 10.4 5.7 0.08 98.8 2.55 1.42 0.51 0.51 0.00 5.00 50

1.2 54.6 27.8 10.3 5.5 0.12 98.5 2.53 1.45 0.51 0.50 0.01 5.00 50

1.3 54.5 28.5 11.1 5.4 0.13 99.9 2.50 1.47 0.55 0.48 0.01 5.01 53

2.4 56.2 27.5 9.7 6.3 0.11 100.0 2.56 1.41 0.48 0.56 0.01 5.01 46

2.1 55.7 27.3 9.4 6.4 0.30 99.5 2.56 1.41 0.46 0.57 0.02 5.03 44

2.2 57.3 26.8 8.9 6.9 0.12 100.2 2.60 1.37 0.43 0.61 0.01 5.02 41

3.1 59.5 24.9 7.0 7.8 0.17 99.6 2.70 1.27 0.34 0.69 0.01 5.01 33

3.2 58.1 26.2 8.4 7.2 0.18 100.2 2.64 1.33 0.41 0.63 0.01 5.02 39

3.3 61.5 24.2 5.7 8.3 0.29 100.2 2.76 1.22 0.27 0.72 0.02 5.00 27

MME (BJS12-08MME)

1.1 56.8 26.6 8.8 6.7 0.16 99.3 2.60 1.37 0.43 0.59 0.01 5.01 42

1.2 58.6 25.7 8.0 7.3 0.17 99.9 2.66 1.31 0.39 0.64 0.01 5.01 37

1.3 55.5 28.0 9.1 5.3 1.23 99.5 2.56 1.45 0.45 0.48 0.07 5.00 45

2.1 60.6 24.5 6.1 8.5 0.13 100.1 2.74 1.24 0.29 0.75 0.01 5.02 28

3.1 55.6 27.9 10.2 5.9 0.14 99.9 2.54 1.43 0.50 0.52 0.01 5.00 49

4.1 56.2 27.5 9.7 6.0 0.27 99.8 2.57 1.41 0.48 0.53 0.02 5.00 47

Structural formulas on the basis of 8 oxygen atoms
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for the MMEs), and both are grossly I-type granitoids (Fig. 7c).
On SiO2-variation diagrams (Fig. 8), the MMEs and their host
granodiorite define inverse linear trends for most elements (e.g.,
TiO2, Fe2O3

T, MnO, MgO, CaO, Eu and Y abundances).
Chondrite-normalized REE patterns of the host granodio-

rite are scoop-shaped (Fig. 9a), showing highly and regularly

fractionated patterns from La to Dy ([La/Dy]N=4.8–13.9) and
little to slightly fractionated patterns from Dy to Lu ([Dy/
Yb]N≈1–1.1) without a garnet signature (i.e., no HREE deple-
tion). Chondrite-normalized REE patterns of the MMEs are
similar to their host granodiorite, but differ significantly in hav-
ing elevated HREE abundances (Fig. 9a, b) because of their
greater proportions of mafic minerals (e.g., amphibole and bi-
otite) in which HREEs are less incompatible. The host grano-
diorite samples show a varying Eu anomaly of Eu/Eu*=0.86–
1.15, whereas theMMEs all have a negative Eu anomaly of Eu/
Eu*=0.67–0.79 because of the lower plagioclase modes.

In the primitive mantle-normalized spidergram (Fig. 10), both
the host samples and the MMEs are enriched in large ion
lithophile elements (LILEs; e.g., Rb, K, Pb) and relatively deplet-
ed in high field strength elements (HFSEs; e.g., Nb, Ta, Ti) and
show a varying Sr anomaly (i.e., Sr/Sr*=0.9–2.2) for the host and
a negative Sr anomaly (i.e., Sr/Sr*=0.4–0.6) for the MMEs. The
Nb/Ta ratios are sub-chondritic (vs. chondritic value of 17.5; Sun
andMcDonough 1989) and are the same for both the granodiorite
host (15.1–16.1) and the MMEs (15.2–16.4).

Whole-rock Sr-Nd-Hf isotopes

Whole-rock Sr-Nd-Hf isotopic compositions for the MMEs
and their host granodiorite are listed in Table 5. The
87Sr/86Sr initial ratios, εNd(t) and εHf(t) have been calculated
at 430 Ma corresponding to the crystallization age of the
MME-host granitoids (see above). The Sr-Nd isotope compo-
sitions for both the MMEs (87Sr/86Sr(i)=0.7069–0.7082;
εNd(t)=−3.9–−3.1) and their host granodiorite (87Sr/86Sr(i)=
0.7067–0.7072; εNd(t)=−3.8 to −3.2) are quite similar and
show a narrow range of variation (Fig. 11). The Hf isotope
compositions of the MMEs and their host granodiorite exhibit
a relatively wider range: in one host-MME pair (BJS12-
08host/BJS12-08MME), the MME (εHf(t)=6.4) has identical
εHf(t) to the host (εHf(t)=6.7) within analytical error. In anoth-
er pair (BJS12-06host /BJS12-06MME), the MME (εHf(t)=
14.7) has more positive εHf(t) than the host (εHf(t)=5.9),
resulting from the too low Lu/Hf ratio (0.0196). The extreme-
ly high εHf(t) results from the calculation due to nugget effect
of zircons (Van Dongen et al. 2010) because of the unexpect-
edly high Hf (3.53 ppm) and too high Zr (128 ppm); this
cannot be readily discerned petrographically because of the
accessory nature of zircons. A third pair (BJS12-10host/
BJS12-10MME), the MME (εHf(t)=1) has less positive
εHf(t) than the host (εHf(t)=5.8). Despite of a wide range of
variation actually caused by the large variation of Lu/Hf ratios,
the Hf isotope compositions for the MMEs and their host
granodiorite are actually similar as the Sr-Nd isotopes, be-
cause of the significant correlated variations of 87Rb/86Sr vs.
87Sr/86Sr, 147Sm/144Nd vs. 143Nd/144Nd, and 176Lu/177Hf vs.
176Hf/177Hf (Fig. 12). Contributions from mature continental
crust are apparent as shown by the radiogenic Sr and

BJS12-08host

(a)

46

40 46

43
45

44 40

32 39

33
44

500 um

35 54 49

42

48

29

43

41

50
50

53 46

BJS12-04MME

(c)

500 um

500 um

(b)

BJS12-04host

Fig. 5 Plagioclase composition in terms of anorthite content (An) in
granodiorite hosts (a, BJS12-08host; b, BJS12-04host) and the MME
(c, BJS12-04MME). See Table 2 for compositional data
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unradiogenic Nd (εNd(t) <0), but the variably radiogenic Hf
(εHf(t)>0) for both the MMEs and their host granodiorite also
point to a significant mantle input. Theoretically, the present-
day Nd and Hf isotopes of most crustal and mantle-derived
rocks correlate and form the BTerrestrial Array^ or Nd-Hf
isotopic coupling (Vervoort and Blichert-Toft 1999, Vervoort
et al. 2011) because of the similar behavior of radioactive
parents (P: Sm and Lu) relative to radiogenic daughters (D:
Nd and Hf), i.e., (Kd[P/D]>1: Kd[Sm/Nd]>1 and Kd[Lu/Hf]>1)
during magmatism. However, the Nd-Hf isotopic decoupling
is common and anticipated in granitoids (see Huang et al.
2014), especially if the source rock histories involve sedimen-
tary and metamorphic processes because of (1) different half-
life of the radioactive parents: T1/2(

176Lu) << T1/2(
147Sm); (2)

different behavior of Lu over Hf (vs. Sm over Nd); and the (3)
Bzircon effect^ inherited from the source/protoliths histories
(Patchett et al. 1984). Thus, Nd-Hf isotopes can exhibit
decoupling in magmatic (granitoid) rocks inherited from
sources involving non-magmatic processes (e.g., Huang
et al. 2014). Although the exact controls on the observed
Nd-Hf isotopic decoupling is significant and needs further
exploration (see below), the most straightforward observation
is that Sr-Nd-Hf isotopes between the MMEs and their host
granodiorite are overlapping and indistinguishable, and show
no correlated variations with SiO2 and MgO (Fig. 13).

Discussion

Petrogenesis of the mafic magmatic enclaves

The MMEs have igneous mineralogy and textures, and have
an identical age to their host granodiorite, indicating an

igneous origin for the MMEs. This rules out the restite origin
representing refractory residues of source-rock anatexis (e.g.
White and Chappell 1977; Chen et al. 1989; Chappell 1996) at
least for the BJS MMEs which we study here as well as for
those in many syncollisional granitoids which we are investi-
gating at present (see Niu et al. 2013).

It is worth to note that the same or very similar observations
mentioned above have been commonly used as evidence for
magma mixing for MME-bearing granitoids (e.g. Vernon
1983; Didier 1987; Dorais et al. 1990; Castro et al. 1990;
Barbarin and Didier 1991; Chen et al. 2009a, b). However,
in the case of BJS granitoids pluton, the magmamixing model
has more difficulties than certainties. The correlated variations
of TiO2, Fe2O3

T, MnO,MgO, CaOwith SiO2 (Fig. 8) could be
interpreted as reflecting magma mixing, but magma mixing is
often considered a complex, multi-stage process (e.g.,
Clemens 1989; Bateman 1995) in which linear trends can
be disturbed (Donaire et al. 2005). Furthermore, if the
MMEs in the BJS pluton represent the basaltic melt for the
magma mixing, the hypothetical magma parental to MMEs
would be SiO2-poor (<48 wt.%), CaO-rich (>8.7 wt.%) and
MgO-rich (>8 wt.%), but this is not the case and no such
basaltic melt has been found in the study area. Importantly,
the MMEs comprise dominantly amphibole and plagioclase,
which are common cumulate minerals in andesitic melts. If
the parental melts were basaltic, the typical cumulate from
such evolved basaltic melt would be gabbro dominated by
clinopyroxene and plagioclase. This is an important petro-
logical concept. Because of the modal variability (amphibole
vs. plagioclase; and MMEs vs. the host), these linear trends
are consistent with mineral-mode-controlled mixing (Fig. 8)
but it also consistent to first-order fractional crystallization
(see below).

In this case, isotopes offer a robust tool for distinguishing
mantle derived magmas (if the MMEs do represent such a
magma with a mantle isotopic signature) from crustal melts
(if the granitoid host does represent such a melt with a crustal
isotopic signature) (Huang et al. 2014). For example, MMEs
from Criffell and Strontian plutons in Great Britain (Holden
et al. 1987) and felsic plutons in Taihang orogen (Chen et al.
2009b) have higher εNd(t) than the hosts, which may indeed
have resulted from magma mixing. However, in the case of
our study, Sr-Nd-Hf isotopes between the MMEs and their
host granodiorites are overlapping and indistinguishable,
which is inconsistent with the origin of magma mixing be-
tween the alleged two different melts of mantle origin (repre-
sented by the MMEs) and crustal origin (represented by the
granodiorite host), respectively. In spite of this, many authors
still follow the popular view that thermal and chemical equil-
ibration between coeval, compositionally contrasted magmas
(Dorais et al. 1990; Eberz and Nicholls 1990; Allen 1991;
Chen et al. 2009a, b) can account for the similar isotopes
between the two lithologies.We emphasize that it is physically
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Table 4 Whole-rock major and trace element analyses of the host granodiorite and the mafic magmatic enclaves

Type host MME

Sample BJS12-04host BJS12-06host BJS12-08host BJS12-10host BJS12-04MME BJS12-06MME BJS12-08MME BJS12-10MME

SiO2 64.3 62.5 66.0 63.9 57.1 54.7 48.3 48.3

TiO2 0.35 0.43 0.36 0.41 0.57 0.55 0.70 0.78

Al2O3 15.5 16.5 16.1 16.8 15.1 15.0 14.8 15.6

Fe2O3
T 4.23 4.88 3.58 4.57 7.80 9.17 11.88 11.81

MnO 0.09 0.09 0.07 0.09 0.20 0.24 0.30 0.30

MgO 2.58 3.10 2.55 2.84 5.57 6.53 8.12 7.70

CaO 4.33 5.47 5.19 5.21 6.76 8.12 8.67 8.24

Na2O 3.37 3.36 3.40 3.42 2.99 2.71 2.73 2.79

K2O 1.96 1.67 1.43 1.57 1.49 1.22 1.65 1.84

P2O5 0.07 0.11 0.09 0.09 0.09 0.11 0.14 0.12

LOI 1.13 1.13 1.04 1.16 1.26 0.94 1.05 1.38

Toltal 97.9 99.3 99.8 100.1 98.9 99.3 98.4 98.9

Mg# 0.55 0.56 0.59 0.56 0.59 0.59 0.58 0.57

A/NK 1.00 0.96 0.97 1.00 0.80 0.73 0.67 0.73

A/CNK 2.02 2.26 2.25 2.29 2.32 2.59 2.37 2.38

Na2O/K2O 1.72 2.01 2.38 2.18 2.01 2.22 1.66 1.52

Sc 12.0 14.0 8.6 11.7 30.8 31.4 43.6 50.5

V 88.1 99.6 61.2 92.8 162 177 239 253

Cr 68.9 92.8 64.3 83.2 269 409 547 354

Ni 23.9 26.1 28.5 22.5 49.4 100.2 116.2 68.0

Rb 73.8 65.2 54.0 62.8 54.9 41.4 57.7 61.3

Sr 308 380 359 369 282 284 248 271

Y 10.7 11.9 7.0 10.3 26.2 29.8 36.9 43.4

Zr 122 97.9 94.7 121 75.9 128 58.6 28.8

Nb 5.34 5.30 3.59 4.58 5.72 4.94 6.29 6.99

Cs 2.78 2.91 2.07 2.89 1.79 2.43 3.34 2.58

Ba 666 548 439 566 397 385 438 520

La 22.5 8.7 8.4 9.8 11.3 9.5 12.4 10.1

Ce 42.0 16.9 14.9 20.1 29.1 29.3 36.4 30.7

Pr 3.80 2.07 1.63 2.20 4.28 4.61 5.60 5.11

Nd 12.1 8.45 6.07 8.33 18.4 21.1 25.2 24.3

Sm 2.11 1.99 1.25 1.80 4.37 5.20 6.28 6.75

Eu 0.58 0.63 0.47 0.59 1.07 1.34 1.57 1.57

Gd 1.95 2.02 1.21 1.77 4.38 5.05 6.24 7.13

Tb 0.28 0.31 0.18 0.27 0.69 0.78 0.97 1.15

Dy 1.73 1.94 1.12 1.65 4.36 4.95 6.13 7.35

Ho 0.36 0.40 0.24 0.34 0.92 1.03 1.28 1.55

Er 1.08 1.19 0.71 1.03 2.80 3.10 3.91 4.64

Tm 0.16 0.17 0.10 0.15 0.41 0.46 0.57 0.67

Yb 1.13 1.18 0.72 1.04 2.87 3.23 4.03 4.61

Lu 0.18 0.18 0.11 0.16 0.43 0.49 0.61 0.69

Hf 3.33 2.49 2.34 3.04 2.35 3.53 1.61 1.13

Ta 0.35 0.34 0.22 0.30 0.35 0.32 0.40 0.44

Pb 18.6 12.3 11.5 13.7 12.4 11.6 11.0 11.6

Th 13.5 3.01 2.85 4.15 1.70 0.64 2.62 2.85

U 1.16 0.62 0.43 0.56 0.41 0.29 0.51 0.70

Nb/Ta 15.2 15.8 16.1 15.1 16.4 15.2 15.7 15.9

Mg# =Mg2+ /(Mg2+ +Fe2+ )(molar ratio)

A/CNK=Al2O3/(CaO+Na2O+K2O) (molar ratio); A/NK=Al2O3/(Na2O+K2O) (molar ratio)

The origin of MMEs in syn-collisional granitoids 587



unlikely that isotopes become homogenized whereas major
and trace elements are not (Niu et al. 2013). This is simply
because isotopes are Bcarried^ by the relevant chemical ele-
ments and isotopic diffusion cannot take place without the
diffusion of the Bcarrying^ elements. Yet, some authors still
argue that isotopic equilibration is generally more easily
achieved than chemical equilibration (e.g., Barbarin 2005)
on the basis of some experimental interpretations (Lesher
1990). In the case of our study, there are two compelling
arguments against thermal and chemical equilibration: (1)
the MMEs are in sharp contact with their host granodiorite,
and lack compositional or textural zoning related to their con-
tacts; (2) plagioclase in the MMEs and their host granodiorite
show no compositional and textural disequilibrium.

The foregoing analysis shows thatMMEs in the BJS pluton
formed from coeval and cognate magmas with their host
granodiorite, rather than representing mantle derived magmas
for magmamixing. Indeed, the cumulate origin for MMEs can
overcome the difficulties of magmamixing and account for all
of the observations: (1) the MMEs are mineralogically the
same as their host granodiorite but have higher modes of maf-
ic minerals (Amp and Bt) (Fig. 2), as they are products of early
crystallization. This is actually consistent with experimental
evidence that mafic minerals are the earliest liquidus phases
crystalling prior to feldspars and quartz during granodioritic
melt evolution (Naney and Swanson 1980); (2) the MMEs
have higher abundances of HREEs than their host granodiorite
(Fig. 9a, b) as they are enriched in mafic minerals; (3) the
MMEs have overlapping and indistinguishable Sr-Nd-Hf iso-
tope composition with their host granodiorite as they both
formed from the same magmas; (4) the coherent composition-
al trend on the SiO2-variation diagrams is consistent with the
liquid lines of descent (Fig. 8) and is directly controlled by the
varying mineral modes.

However, the cumulate origin interpretation has been
questioned since it was firstly proposed by Daly (1933), be-
cause it would not be consistent with the small grain size of
MMEs (Barbarin and Didier 1991). To address this issue,
Donaire et al. (2005) suggested that the MMEs forming pro-
cesses would have been in zones of rapid cooling, e.g., at the
walls of the magma conduits. The small grain size ofMMEs is
important and should be taken serious. However, it should not
be regarded as independent evidence for magma mixing and
against cumulate origin.

It is straightforward to perceive that emplacement of a body
of primitive magma into a Bcold^ environment (e.g., develop-
ing a magma chamber), magma quench is inevitable when the
wall-rock temperature is below the liquidus of the magma. For
an andesitic primitive magma parental to the syncollisional
granitoids (Niu et al. 2013), the first major liquidus phases
would be amphibole (±biotite±plagioclase) and rapid quench
will facilitate abundant nucleation without between-nuclei
space for growth, thus forming fine-grained MME cumulate.
This early fine-grained more mafic cumulate piles (largely
plastic before complete solidification) can be disturbed by
subsequently replenished granitoid (granodiorite and diorite)
magmas with pieces of the cumulate included as MMEs in the
granitoid host.

Constraints on the source

Implication from MMEs

It is likely that magma mixing is a common process in gener-
ating intermediate to felsic magmas worldwide. In the case of
BJS pluton, however, we emphasize that contrary to the pop-
ular view, MMEs are not evidence for magma mixing, but
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rather they are of cumulate origin (Niu et al. 2013). The argu-
ment for the origin of MMEs as magma mixing emphasized
the role of mantle derived basaltic melt represented by the

MMEs. However, the chemical characteristics and the petrol-
ogy of the MMEs (e.g., lack of pyroxene and low An plagio-
clase) are consistent with the magmas parental to the MMEs
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and their host granodiorite being mafic andesite (Niu et al.
2013). In fact, our ongoing studies about the ∼180 km long
granitoid belt in the eastern segment of the NQOB (Fig. 1a)
concur with the observations of the MMEs in BJS. This re-
quires a volumetrically significant basaltic rock source to melt
for the BJB MME-bearing granitoids.

Geochronological constraints

Recent studies suggested the Qilian ocean was closed at the
end of the Ordovician (∼445 Ma) followed by continental
collision as recorded in subduction-zone metamorphic rocks
on the northern edge of the Qilian–Qaidam block at ∼435–
420 Ma (see Song et al. 2013). The coeval (∼430 Ma) MMEs
and their host granodiorite of BJS pluton are best interpreted
as a magmatic response to the collision between the Qilian-
Qaidam block and Alashan block. This analysis points to a
genetic link between the magmatism and continental collision
(Mo et al. 2008) for juvenile continental crust accretion and
rules out the significance of intra-oceanic island arc or conti-
nental arc magmatism in space and time in continental crust
accretion in the standard model.

Geochemical constraints

Following the foregoing data and discussion we tend to draw
the conclusion that the primitive magmas parental to the BJS
MME-bearing granodiorite are mafic andesitic magmas de-
rived from a basaltic source during continental collision. In
the broad context of the continental collision, possible basaltic
source candidates in abundance are (1) recently accreted is-
land arc complex (e.g. Kay and Kay 1993), (2) thickened
lower crust (e.g. Xu et al. 2002; Chung et al. 2003; Wang
et al. 2004, 2005a; Seghedi et al. 2007), and (3) the remaining
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part of the oceanic crust (e.g. Niu 2005; Mo et al. 2008; Niu
and O’Hara 2009).

It is noteworthy that the well preserved island-arc complex
extends as a continuous belt between the two ophiolite belts
along the major tectonic line of the NQOB (Zhang et al. 1998;
Wang et al. 2005b; Xia et al. 2012; Song et al. 2013), appar-
ently indicating the presence of an island-arc system in the
North Qilian ocean before the continental collision. These
well preserved island-arc complex seems to provide a proba-
ble basaltic source, however, it is not, because (1) island arcs
with a positive topography are too shallow and too cold to
melt (Niu et al. 2003); (2) melting of mafic/ultramafic deep
arc crust cumulate, if there were any, could produce andesitic
melt, but such melt would be too depleted (Mo et al. 2008;
Tamura et al. 2009), in terms of the observed geochemistry of

the BJS granodiorite (and the MMEs). Therefore, the recently
accreted island arc complex cannot be the source for the BJS
MME-bearing granodiorite.

Recently, many adakitic rocks derived from the lower crust
in mainland China and on the Tibetan Plateau have been re-
ported. The geochemistry (e.g., high Sr/Y, La/Yb ratios and
depleted HREE) of these adakitic intrusive rocks suggests that
garnet must have been stable as a residual phase during partial
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melting (e.g., Xu et al. 2002; Wang et al. 2004, 2006; Chung
et al. 2003). However, the scoop-shaped chondrite normalized
REE patterns (Fig. 9a) and the constant (Dy/Yb)N with in-
creasing (La/Sm)N (Fig. 14) of the BJS pluton, indicate that
garnet was not present, which contradicts with the geochem-
ical signatures formed by partial melting of lower crustal gar-
net amphibolite or eclogite. Moreover, the positive εHf(t)
values require significant mantle input, which is distinct from
reported adakitic rocks derived from the lower crust (see
Castillo 2012 for review). Thus, the origin by partial melting
of the pre-existing lower crust is implausible.

In this case, the remaining part of the North Qilian oceanic
crust seems to be the most likely source for generating andes-
itic magmas parental to the BJS pluton, because it can inherit
the mantle isotopic signatures from its source (asthenospheric
mantle). In spite of this, melting of the remaining part of North
Qilian oceanic crust, if it can account for the origin of QMS
pluton successfully, must be able to explain two basic issues.

First, what mechanism and condition may have caused
melting of the remaining part of the North Qilian oceanic

crust? A reasonable mechanism in a syn-collisional setting
has been proposed by Mo et al. (2008) and can be addressed
through physical, petrological and geochemical studies (Mo
et al. 2008; Niu and O’Hara 2009; Niu et al. 2013). In their
model, during collision, the underthrusting oceanic crust
would subduct/underthrust slowly, tend to attain thermal equi-
librium with the superjacent warm active continental margin,
and evolve along a high T/P path in P-T space. The warm
hydrated oceanic crust and sediments would melt when
reaching the hydrous basaltic solidus under the amphibolite
facies conditions. Indeed, there are many geochemical simi-
larities between the magmas parental to the BJS MME-
bearing granodiorite and the melts produced from such a
mechanism, including (1) andesitic composition; (2) mantle
(vs. crustal) dominated isotopic signatures inherited from the
oceanic crust (actually ∼95 % mantle contribution, Fig. 11);
(3) no garnet signature, e.g., non-to slightly fractionated REE
from Ho to Lu ([Dy/Yb]N =1∼1.1), which are most likely an
amphibole signature (as residual phase or fractional crystalli-
zation) rather than garnet (Fig. 14). This is identical with
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oceanic crust melted under amphibolite (vs. eclogite) phase
conditions without garnet presence; (4) having an Barc-like
signature^, i.e., relative depletion in Nb, Ta and Ti (Fig. 10),
because these HFSEs are compatible in ilmenite (or
pseudobrookite), which is a common phase in amphibolite
(Niu and Lesher 1991) and its refractory property make it a
residual phase holding these elements (Mo et al. 2008);
(5) sub-chondritic Nb/Ta ratio (15.1–16.1) because of
amphibole controlled fractionation (Kdamphibole

Nb/Ta =1.40) (Foley
et al. 2002).

Second, what processes slightly enriched the depleted an-
desitic melts in 87Sr/86Sr(i) and εNd(t) while εHf(t) values
maintained its inherited depleted signature? Briefly, what kind
of processes decoupled the Nd-Hf isotope systems during
generation or evolution of the andesitic melts? Obviously,
contribution from continental crust is required, while it may
occur in the melting region or an evolving magma chamber
rather than simple crustal level assimilation, as the Sr-Nd-Hf
isotopes for the MMEs and their host granodiorites are closely
similar and show a respectively narrow range of variation, and
they do not show correlated variations with SiO2 and MgO
(Fig. 13). Melting of recycled terrigenous sediments of upper
continental crust and remaining part of the North Qilian oce-
anic crust in the melting region is more likely (Mo et al. 2008;
Niu and O’Hara 2009; Huang et al. 2014). Note that this
assumption is consistent with simple binary isotope mixing
calculations. In Fig. 11, the MMEs and their granodiorite iso-
topic data plot along a two-component Bmixing^ trend be-
tween the North Qilian oceanic crust and terrigenous

sediments. In the calculation, the North Qilian oceanic crust
is represented by the ophiolitic MORB in Yushigou,
Jiugequan, Dachadaban and Laohushan, NQOB (Hou et al.
2006a, b), and terrigenous sediment is represented by the
Mohe gneiss (Chen et al. 2007; Li et al. 2007). The isotopic
compositions of the two end-members are given in Table 6.
The apparent decoupling between Nd and Hf isotopes was
caused by the large difference in Nd/Hf ratios between the
sediment and the oceanic crust which makes the mixing line
highly curved and shift away from the terrestrial array
(Fig. 11) (e.g., Huang et al. 2014). Taking consideration of
mass balance, the contribution of mantle (i.e., the North
Qilian MORB) is ∼95 %, and the contribution of terrigenous
sediments (i.e., the Mohe gneiss) is ∼5 %.

Hence, partial melting of recycled terrigenous sediments
and the remaining part of North Qilian oceanic crust during
the collision under the amphibolite facies conditions can
readily explain the source of the BJS MME-bearing
granodiorite.

Conclusions

1. Zircon U-Pb ages of the host granodiorite (433.7±3.4 Ma)
and their contained MMEs (431.6±2.8 Ma) coincide with the
closure of the Qilian ocean and continental collision at ∼440–
420Ma. This indicates that the granitoids must be a magmatic
response to the collision between the Qilian-Qaidam block
and Alashan block.
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(2 ppm) contents very similar to to BCC for convenience. The partition
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Table 6 Isotopic compositions of melts derived from two geochemical
end-members

Geochemical
end-members

Mohe
basement

North Qilian Ocean MORB

MAX MIN

Rb(ppm) 145.3 44.02 0.44

Sr(ppm) 586.1 389.8 44.9
87Sr/86Sr 0.7279 0.7091 0.7051

Sm(ppm) 5.8 6.81 0.89

Nd(ppm) 33.0 27.11 2.39
143Nd/144Nd 0.5114 0.5131 0.5126

Lu(ppm) 0.24 0.71 0.19

Hf(ppm) 0.4 4.72 0.74

The concentration of Rb, Sr, Sm, Lu and Hf, together with Sr-Nd-Hf
isotopic values for Mohe basement are averages based on Chen et al.
(2007) and Li et al. (2007). The concentration of Rb, Sr, Sm, Lu and
Hf, together with Sr-Nd isotopic values for North Qilian Ocean MORB
are from Hou et al. (2006a, b).Hf isotope for MORB is inferred from Nd
isotope following the equation (εHf=1.59εNd+1.28) given by Chauvel
et al. (2008) because of the statistically significant Hf–Nd isotope ratio
correlation (Zindler and Hart 1986)
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2. The MMEs have the same crystallization age, very sim-
ilar isotopic composition and the same mineralogy with their
host granodiorite i.e. they are co-genetic. We conclude that the
MMEs are cumulate rocks formed at earlier stages of the
same magmatic systems rather than representing mantle
melt required by the popular and the alleged magma
mixing model.

3. The radiogenic Sr and unradiogenic Nd (εNd(t) <0) indi-
cate the contribution of mature continental crust, while vari-
ably radiogenic Hf (εHf(t)>0) for both the MMEs and their
host granodiorite also point to a significant mantle input. The
apparent decoupling between Nd and Hf isotopes was caused
by partial melting of recycled terrigenous sediments and

the remaining part of North Qilian oceanic crust during
collision.
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