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The Palaeozoic granitoids in theQilian Block are important for understanding the tectonic evolution of theNorth-
ern Tibetan Plateau. We choose granitoids from Huangyuan (HY) and Gangcha (Gcha) for a detailed study. The
granitoids are S-type and I-type, and record different magmatisms from the Neoproterozoic to the Palaeozoic.
Most samples have an emplacement age of ~450 Ma with three samples being significantly older (924 Ma,
797 Ma and 503 Ma). The ~924 Ma and ~797 Ma magmatisms represent crustal growth and crustal reworking,
respectively. The 503Ma plagiogranite-like granite carriesmantle isotope signatures and resulted from extensive
fractional crystallization of mantle-derived melt in a back-arc setting. The ~450 Ma granitoids have various
chemical compositions, but most of them share similar trace element patterns resembling the bulk continental
crust composition. Despite their large compositional and age variations, significant correlations on SiO2-
variation diagrams and in isotope spaces suggest that these granitoids are different products essentially derived
from common sources. The significant mantle contributions (70%–80%, apart from QL09-02) required by whole
rock Sr–Nd–Pb–Hf isotopic compositions strongly suggest the “mantle source” as last fragments of the
subducted/underthrusting oceanic crust at the onset of collision. Based on all the petrology, geochronology, geo-
chemical data and adjacent tectonic associations, we suggest that the Qilian Ocean started opening in the
Neoproterozoic between the Qaidam Block and the Qilian Block. A back-arc basin was developed between the
Qilian Block and theAlashan Block shortly after. The 450Ma granitoids are the products in response to the closure
of the Qilian Ocean and the onset of the Qilian–Qaidam continental collision.

© 2014 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Greater Tibetan Plateau is a unique architecture that has
attracted attention and immense effort of scientists over past decades
to understand its origin and evolution as well as its global climatic and
environmental impact. It is a giant geological amalgamation made up
of micro-continental blocks/slivers, formed as a result of several conti-
nental collisions from northeast in the Early Palaeozoic progressively
younger towards southwest in the Cenozoic. The youngest India–Asia
collision at ~55 Ma and the associated geology and terranes are much
better studied, but the earlier events and geology to the north are not,
especially, the earliest Qilian–Qaidam system at the northern margin
of the plateau.
es, DurhamUniversity, Durham
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The Qilian Orogenic Belt (QOB) (Fig. 1A) within the Qilian–Qaidam
system at the northernmost margin of the Greater Tibetan Plateau has
recorded the histories of continental breakup, seafloor spreading, and
the ultimate continental collision from the Neoproterozoic to the
Palaeozoic (Song et al., 2009, 2013, 2014). The tectonic subdivision of
QOBhas evolved over the years, and themost recent suggestion is as fol-
lows (Song et al., 2006, 2013, 2014) (Fig. 1A): (1) the north Qilian oro-
genic belt (NQOB), (2) the Qilian Block (QB), (3) the North Qaidam
ultrahigh-pressure metamorphic (NQ-UHPM) belt, and (4) the
Qaidam Block (QDB). The metamorphic history has been well stud-
ied and reviewed by Song et al. (2013), while the mechanism of
continental growth remains unclear. Several models of Qilian Oro-
genic Belt have been proposed (Xu et al., 1994; Yin and Harrison,
2000; Yang et al., 2002; Gehrels et al., 2003; C.L. Wu et al., 2006;
Song et al., 2006; Xiao et al., 2009; Wu et al., 2010; Gehrels et al.,
2011; Song et al., 2013, 2014). These models are debating on the lo-
cation of the suture zone and subduction polarity of the Palaeo-
Qilian Oceanic lithosphere. However, the major hindrance is the
lack of adequate knowledge of magmatism during the subduction/
collision period and therefore the poor time constraints on the
onset of subduction and collision. In contrast to the popular
V. All rights reserved.
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Fig. 1. (A) Schematic map showing major tectonic units of the Qilian Orogenic Belt (after Song et al., 2013). (B) Simplified geological map of the Qilian Block showing the distribution of
granitoids and ophiolites (after Pan et al., 2004). Data are from the literature given in Table 1. (C) Detailed geological map of the sampling locations (after Pan et al., 2004).
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research of metamorphic rocks within the NQOB and the NQ-UHPM
and numerous studies of magmatism within the NQOB, little is
known about those granitoids which are coeval with metamor-
phism at the early Palaeozoic in the QB. Sandwiched between two
important tectonic units, the QB is particularly important for under-
standing the relationship of these subunits and the tectonic histo-
ries of the block itself and the region in the context of the Greater
Tibetan Plateau evolution.

In this study, we aim to understand the nature of the Qilian
Block by studying the petrology, geochronology and geochemis-
try of the Palaeozoic granitoids with the result also having shed
lights on the evolution histories of its sutures to the north (i.e.,
the NQOB with seafloor subduction-zone complex) and to the
south (i.e., the NQ-UHPM separating the Qaidam Block to the
south).
2. Tectonic setting and geology background

2.1. Strata, metamorphic rocks and mafic rocks in the QOB

The QOB is a broad and composite orogenic belt bounded by the
Yangtze Craton to the southeast, East Kunlun orogenic belt to the
south, Alashan Block to the northeast and Tarim Basin to the northwest
(Fig. 1A). It has four subunits from the North to South: NQOB, QB, NQ-
UHPM and QDB (Fig. 1A).

The NQOB is covered by Carboniferous to Triassic sedimentary se-
quences. The magmatic clasts within the Silurian flysch formations are
dated at 515–429 Ma (Song et al., 2013). The Devonian molasses are
also found in this belt. The NQOB is characterized by the occurrence of
low-T/HP blueschist and eclogite-facies rocks (Zheng, et al., 2013). The
metamorphic rocks record a cold oceanic subduction zone with a
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thermal gradient of ~6–7 °C/km (Song et al., 2007; Zhang et al., 2007).
There are two ophiolite belts in the NQOB (Song et al., 2013). Magmatic
zircon dating for ophiolites gives ages varying from496 to 550Ma (Song
et al., 2013) in the south and from 448 to 490 Ma in the north (Xia and
Song, 2010; Song et al., 2013).

TheQB, bounded by theNQOB to the north and theNQ-UHPMbelt to
the south is dominantly Precambrian basement (Chen et al., 2007a; D.
Chen et al., 2009; N. Chen et al., 2009) covered with the Palaeozoic sed-
imentary lithologies. Granitic intrusions with ages of 880–940 Ma as
well as the coeval metamorphism are documented (Guo et al., 1999;
Tung et al., 2007a, 2007b; Xu et al., 2007; Song et al., 2012, 2013). The
Dabanshan ophiolite at the NQOB-QB boundary (Fig. 1B) mainly out-
crops as dismembered lenses, consisting of pillow basalt, gabbro,
harzburgite, pyroxenite and hornblendite etc. with minor felsic litholo-
gies. Sm–Nd isochron gives the age of ~492 ± 22.6 Ma for basalt
(Qinghai Geological Survey Institute, 2006). A few low-K2O (0.05–
0.96 wt.%) tholeiitic dikes cut through the Palaeoproterozoic basement
(Qinghai Geological Survey Institute, 2006). The Lajishan ophiolite asso-
ciating with tonalite, diorite and plagiogranite in the southern QB near
the QB and NQ-UHPM boundary (Fig. 1B) is of MORB protolith and
dated at 510 Ma (Hou et al., 2005).

The NQ-UHPM belt is characterized by UHPM eclogite-facies blocks
and lenses hosted in the UHPM granitic gneisses (Song et al., 2003a,
2003b, 2006; Zhang et al., 2006). The protoliths of the UHPM rocks
vary, including granitic gneiss of ~1200–900 Ma and ultramafic rocks
of 550–500 Ma (Song et al., 2013; and references therein) and ~877–
750 Ma (Yang et al., 2006; Zhang et al., 2011). Previous studies indicate
that the HP–UHP metamorphism and subsequent exhumation hap-
pened from 497 Ma to 400 Ma (Yang et al., 2002; Song et al., 2003b,
2005, 2006; D. Chen et al., 2009; N. Chen et al., 2009). Volcanic arc ba-
salts of 514 Ma are regarded as reflecting seafloor subduction (Shi
et al., 2004).

The QDB is dominated by the Precambrian meta-crystalline base-
ment (Chen et al., 2011) covered with Palaeozoic–Mesozoic sedimenta-
ry rocks. It is located to the northwest of the numerous East Kunlun
batholiths of Palaeozoic to Mesozoic ages (Chen et al., 2011; Huang
et al., 2014).
2.2. Palaeozoic granitoids in the QOB

The Palaeozoic granitoids in the QOB are concisely summarized in
Fig. 1B and Table 1. Generally, I-type rocks (453–512 Ma) predate S-
type rocks (424–516 Ma) despite some ages overlap (Table 1). They
have been interpreted as products in response to varying stages of
Table 1
Compilation of Palaeozoic granitoids in the Qilian Orogenic Belt (QOB).

Location Age Rock-type Refs.

NQOB Kekeli 476–512 I 1 (Wu et al., 2010)
Kekeli 501 I 1
Chaidanuo 508 S 1
Niuxinshan 477 I 1

435 S 1
Minle 463 I,S 1
Jinfosi 424 S 1
Chaidanuo 516 S 2 (Song et al., 2012)
Leigongshan 453 I 3 (Tseng et al., 2009)

NQ-UHPM Aolaoshan 473 I 4 (Wu et al., 2001)
Dachaidam 446 S 5 (Wu et al., 2002)
Dachaidam 446 S 6 (Wu et al., 2007)

408 S 6
460–470 I 6
370 S 6

Dachaidam 442 ? 7 (Gehrels et al., 2003)
Ulan 493 I 8 (Chen et al., 2011)
Ulan 422 S 8

QB Huangyuan 450–446 S 9 (Yong et al., 2008)

Numbers refer to the numbers in Fig. 1B.
earlier southward subduction of the Qilian Ocean seafloor underneath
the NQOB and later northward subduction underneath the Alashan
Block, i.e., the double subduction model (C.L. Wu et al., 2006; Wu
et al., 2010) compared to the northward subduction model (Xu et al.,
1994; Yin and Harrison, 2000; Song et al., 2013, 2014) and southward
subduction model (Gehrels et al., 2003).

There has been only one study on the Palaeozoic batholiths in theQB
(Yong et al., 2008). It is a typical S-type batholith of ~446–450Ma in the
Huangyuan (HY) area in the eastern part of the QB (Table 1, Fig. 1B)
with εNd(t) of−5.2 and−6.6 (Yong et al., 2008). It is interpreted as de-
rived frommetagreywacke in a syncollisional settingwithout giving de-
tails (Yong et al., 2008).

Granitoids in the NQ-UHPM are generally I-type before 446 Ma and
S-type after 446 Ma (Fig. 1B, Table 1). The I-type granitoids are
interpreted as subduction related and S-type rocks are interpreted as
collision related (Wu et al., 2001, 2002; Gehrels et al., 2003; Wu et al.,
2007) based on their geochronology and petrology. Chen et al. (2011)
report one I-type sample of 493 Ma and two S-type samples of 422
Ma in the Ulan area (Fig. 1B) and propose that theymight have a source
related to EM II based on the Sr–Nd–Pb–O isotopes, which cannot be
justified.

Our samples are collected from 13 locations of several intrusions,
generally representative of those in the eastern part of the Qilian
Block. GPS data are given in Table 2. Two samples QL09-18 and QL09-
19 are from an ophiolite in the Dabanshan at the boundary with the
NQOB in the north (Fig. 1B, C, Table 1). Other samples with ‘QL09’ ini-
tials are from Huangyuan (HY) (Table 2) where Proterozoic sedimenta-
ry rocks dominate with some Mesozoic strata (Fig. 1C). Samples with
‘QL10’ initials are from the Gangcha area (Gcha) (Table 2) where
Palaeozoic and Mesozoic sedimentary strata dominate (Fig. 1C).

3. Methods

All the 24 samples were analysed for bulk-rock major and trace ele-
ment compositions at Tianjin Institute of Geology and Mineral Re-
sources, China (See Huang et al., 2014). Nine representative samples
were selected for zircon U–Pb dating at China University of Geosciences
(Wuhan) following Liu et al. (2008) and China University of
Geosciences (Beijing) following Song et al. (2010a). Results from both
labs are consistent. The dated samples were analysed for bulk-rock Sr–
Nd–Pb–Hf isotopes at the Northern Centre for Isotopic and Elemental
Tracing (NCIET) at Durham University. The long term performance of
the Neptune in Durham for Sr, Nd and Hf isotopes was reported by
Nowell et al. (2003). All the analytical details are given by Huang et al.
(2014).

4. Petrology, zircon dating and geochemistry

Samples can be divided into three groups according to their ages,
mineralogy, and geochemical compositions (Table 1). Three samples
are significantly older than others: 924Ma, 797Ma and 503Ma, respec-
tively. Other samples are ~450 Ma I-type granitoids with no Al-rich
minerals and S-type granitoids containing Al-rich minerals, e.g. garnet
(Grt), muscovite (Ms) and allanite (Aln) (Table 1, Fig. 2). Bulk-rock
major and trace element data are given in Table 3, and Sr–Nd–Pb–Hf
isotope data are given in Table 4. They are all calc-alkaline (Fig. 3) and
define good correlations on SiO2-variation diagrams (Fig. 4).

4.1. Old rocks—924 Ma, 797 Ma and 503 Ma

Granite QL09-15 is slightly deformed, containing Qz, Pl, Kfs, and Ms.
It has enriched light rare earth element (LREE) patterns with flat heavy
REEs (HREEs) (Fig. 5). Zircons areweak luminescent andwell oscillatory
zoned (Fig. 6) with high Th/U ratios (0.18–0.49, Table S1). Twenty one
analyses give a coherent concordant 206Pb/238U age of 924.1 ± 1.5 Ma
(Fig. 7), representing the crystallization age. The inherited zircons



Table 2
Sample locations and brief descriptions of the studied samples in the Qilian Block.

Sample Age GPS position Mineral assemblage SiO2% A/CNK

Old rocks QL09-15 924 N36°48.726′ E101°09.977′ Pl, Kfs, Grt, Ms, Qz, slightly deformed 70.0 1.17
QL09-01 797 N36°27.116′ E101°05.634′ Qz, Kfs, Pl, Bt, Ms, Grt 72.7 1.31
QL09-18 503 N37°22.712′ E101°23.887′ Qz, Pl, Chl, minor Kfs, slightly deformed 72.3 1.23
QL09-19 N37°22.712′ E101°23.887′ Amp, Pl 51.6 0.79

S-type QL09-02 430 N36°27.116′ E101°05.634′ Qz, Kfs, Pl, Bt, Ms 72.4 1.17
QL09-07 N36°27.047′ E101°05.557′ Qz, Kfs, Pl, Chl, calcite vein 71.9 1.66
QL09-09 N36°34.895′ E101°13.520′ Qz, Kfs, Pl, Bt, Ms 70.8 1.06
QL09-10 430 N36°34.895′ E101°13.520′ Qz, Pl, Bt, Ms, Grt 75.1 1.05
QL09-12 430 N36°46.731′ E101°07.428′ Qz, Kfs, Pl, Bt, Aln 71.3 1.10
QL09-17 N36°48.672′ E101°09.914′ Qz, Kfs, Pl, Bt, Ms 69.6 1.17
QL10-40 F N37°23.678′ E100°27.800′ Minor Bt, Ms, Q, altered feldspar, F 74.8 1.10
QL10-41 F N37°23.678′ E100°27.800′ Similar to QL10-40(F), thermol equiliabrated

with QL10-41(C) in the thin section, F
74.8 1.15

I-type QL09-14 450 N36°46.903′ E101°07.562′ Qz, Pl, Amp N Bt, F 56.0 0.79
QL10-32 N37°25.962′ E100°27.615′ Bt, Pl, Qz, Amp, Chl, F 62.0 0.94
QL10-33 N37°25.962′ E100°27.615′ Bt, Amp, Pl, Qz, F 62.2 0.95
QL10-34 450 N37°25.962′ E100°27.615′ Bt, Amp, Pl, Qz, F 62.1 0.92
QL10-35 N37°25.962′ E100°27.615′ Bt, Amp, Pl, Qz, F 61.7 0.90
QL10-44 N37°23.678′ E100°27.800′ Bt, Amp, Pl, Qz, F 60.2 0.96
QL10-45 N37°23.678′ E100°27.800′ Bt, Amp, Pl, Qz, F 62.4 1.00
QL10-37 450 N37°23.678′ E100°27.800′ Bt, Qz, Pl, C 74.1 1.05
QL10-38 N37°23.678′ E100°27.800′ Bt, Qz, Pl, more Bt and Pl, C 62.1 1.08
QL10-40C N37°23.678′ E100°27.800′ Bt, Qz, Pl, C 69.3 1.11
QL10-41C N37°23.678′ E100°27.800′ Bt, Qz, Pl, C 67.9 1.12
QL10-42 N37°22.629′ E100°28.641′ Bt, Qz, Pl, C 65.0 1.11

Pl: plagioclase; Kfs: K-feldspar; Grt: garnet; Ms: muscovite; Qz: quartz; Bt: biotite; Amp: amphibole; Chl: chlorite; Aln: allanite.
F: fine-grained; C: coarse-grained.
Mineral abbreviations follow Whitney and Evans (2010).
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N1.0 Ga are discordant and fail to form aDiscordia line (Fig. 7), but these
data indicate the presence of ancient crystalline rocks in the QB. The
slightly negative εNd(924) value (−3.8) (Table 4) indicates crustal con-
tributions demonstrated by inherited old zircons in this sample (Fig. 7).
Thewhole-rock εHf(924) value of up to 3.8 (Table 4) emphasizes the sig-
nificant mantle input.

Granite QL09-01 consists of Qz, Kfs, Pl, Bt, Grt and Ms with partial
melting texture (sieved texture, broken down minerals, vesicles, and
small percentage of brown glass along grain boundary) (Fig. 2A). It
Amp

Pl

QL09-19

QL09-01

Partial melting texture

Chl

Grt

Qz
Pl

Kfs

A

C

Fig. 2. Photomicrographs under plane polarized light showing partial melting textures of QL09-
type granite QL10-32 (D).
has an enriched LREE pattern with flat HREEs (Fig. 5). Zircon popula-
tions are complex in this sample with Th/U ratios varying from 0.23 to
1.55 (Table S1). Someof themdisplay sector zoning, strip zoning, homo-
geneous in oval shape or clear core–mantle structure (Fig. 6). These
grains form a Discordia line with an Archaean upper intercept of
2769 Ma (Fig. 6). Other grains are prismatic with oscillatory zoning
(Fig. 6) and form two populations (Fig. 7): concordant
Palaeoproterozoic age of ~1800 Ma (blue points of QL09-01 in Fig. 7)
and Neoproterozoic concordant age of 796.7 Ma (Fig. 7). Both
0.5mm
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01 (A), representative S-type granite QL09-10 (B), enclave QL09-19 in QL09-18 (C) and I-



Table 3
Bulk rock major and trace element data of granitoids in the Qilian Block.

Old rocks 450 Ma S-type

QL09-15 QL09-01 QL09-18 QL09-19 QL09-02 QL09-07 QL09-09 QL09-10 QL09-12 QL09-17 QL10-40 F QL10-41 F

SiO2 70.0 72.7 72.3 51.6 72.4 71.9 70.8 75.1 71.3 69.6 74.8 74.8
TiO2 0.28 0.52 0.36 0.72 0.22 0.75 0.32 0.07 0.24 0.31 0.06 0.07
Al2O3 15.5 12.3 14.3 17.4 14.6 11.7 14.9 13.4 14.8 15.8 13.9 14.1
Fe2O3 1.19 1.14 0.96 3.61 0.46 1.40 0.69 0.35 0.87 0.98 0.32 0.41
FeO 1.32 2.40 1.97 6.05 0.75 4.00 1.76 0.60 0.90 1.87 0.50 0.45
FeOT 2.39 3.43 2.83 9.30 1.16 5.26 2.38 0.91 1.68 2.75 0.79 0.82
MnO 0.04 0.07 0.05 0.19 0.02 0.11 0.06 0.07 0.04 0.05 0.03 0.03
MgO 0.59 1.46 1.05 4.76 0.50 2.31 0.66 0.19 0.76 0.63 0.17 0.17
CaO 1.85 1.31 1.18 8.19 0.86 1.07 2.21 1.11 1.66 2.05 0.56 0.53
Na2O 3.23 2.48 5.11 1.27 2.40 2.03 3.44 3.14 3.44 3.30 3.70 3.66
K2O 4.23 2.67 0.97 3.53 6.44 1.63 3.98 5.16 4.45 4.01 5.14 4.86
P2O5 0.09 0.06 0.08 0.15 0.11 0.09 0.13 0.02 0.10 0.09 0.09 0.10
LOI 1.41 2.43 1.35 1.73 1.05 2.50 0.73 0.50 1.14 0.96 0.55 0.53
Total 98.3 97.1 98.3 97.5 98.8 97.0 98.9 99.2 98.6 98.7 99.3 99.2
A/CNK 1.17 1.31 1.23 0.79 1.17 1.66 1.06 1.05 1.10 1.17 1.10 1.15
Li 55.8 25.8 4.39 5.61 9.94 21.9 76.0 32.0 54.7 56.9 12.9 13.9
Sc 5.36 8.60 7.76 33.7 2.80 6.61 5.22 1.81 4.51 7.59 2.79 2.29
Cr 9.18 47.3 2.90 16.3 19.9 16.0 3.89 1.16 16.2 10.9 5.02 5.55
Co 3.81 7.3 2.20 24.5 2.0 4.63 2.65 0.44 2.98 5.14 0.68 0.69
Ni 4.02 12.6 2.50 11.9 3.4 12.5 1.66 0.67 2.48 4.84 0.90 1.03
Ga 18.4 16.0 19.0 18.0 13.8 16.6 20.2 13.6 18.3 21.0 18.0 18.0
Rb 138 104 21.3 25.9 177 119 163 175 166 181 245 231
Sr 109 254 208 325 336 181 332 97.3 336 103 24.3 18.6
Y 19.8 17.4 12.5 22.8 5.97 6.86 18.9 25.8 17.2 25.8 20.0 18.9
Zr 144 263 130 26.5 107 100 181 73 137 149 43.5 50.4
Nb 9.1 12.7 8.11 6.06 5.98 10.7 19.0 8.0 13.0 10.8 21.5 25.2
Ba 824 668 366 411 1542 580 870 207 978 616 135 78.0
La 25.8 45.0 14.0 18.2 28.6 25.9 43.9 17.8 32.4 33.1 10.0 9.69
Ce 50.3 78.3 31.3 38.2 54.0 51.2 80.7 31.1 56.7 67.4 18.6 19.0
Pr 6.41 8.95 3.48 5.08 6.46 6.09 9.24 4.11 6.84 8.17 2.59 2.58
Nd 24.6 31.3 13.4 21.4 23.1 22.7 32.5 15.2 24.0 30.6 9.41 9.73
Sm 5.05 5.15 2.73 4.56 4.65 4.87 5.47 3.03 4.34 6.38 2.50 2.66
Eu 1.00 1.17 0.78 1.23 1.57 0.86 1.14 0.40 1.01 0.99 0.20 0.14
Gd 4.37 4.38 2.75 4.04 3.61 3.75 4.32 2.46 3.49 5.40 2.54 2.66
Tb 0.68 0.62 0.44 0.69 0.45 0.45 0.63 0.48 0.55 0.86 0.57 0.58
Dy 3.83 3.39 2.42 4.23 1.77 1.84 3.49 3.77 3.14 4.91 3.69 3.59
Ho 0.76 0.68 0.51 0.89 0.25 0.30 0.70 1.06 0.63 0.95 0.71 0.69
Er 2.08 1.93 1.54 2.48 0.53 0.71 1.99 3.92 1.74 2.59 2.01 1.97
Tm 0.30 0.30 0.28 0.38 0.06 0.09 0.31 0.74 0.27 0.38 0.33 0.32
Yb 1.92 1.91 1.66 2.49 0.38 0.58 2.14 5.49 1.82 2.43 2.25 2.13
Lu 0.29 0.30 0.28 0.37 0.06 0.08 0.34 0.96 0.28 0.36 0.32 0.30
Hf 4.38 6.90 4.16 1.14 3.30 2.86 5.56 2.88 4.30 4.62 2.22 2.51
Ta 0.98 0.74 0.70 0.34 0.65 0.68 1.90 1.13 1.52 1.23 4.21 6.09
Pb 26.6 28.5 3.41 6.82 52.2 22.7 40.2 54.7 42.5 30.3 33.7 27.7
Th 11.7 12.7 5.05 1.86 11.4 11.6 20.9 20.3 17.7 14.3 7.33 7.45
U 1.76 1.57 1.02 0.62 1.21 0.79 7.80 4.90 2.13 2.06 2.37 3.15

450 Ma I-type

QL09-14 QL10-32 QL10-33 QL10-34 QL10-35 QL10-37 QL10-38 QL10-40C QL10-41C QL10-42 QL10-44 QL10-45

SiO2 56.0 62.0 62.2 62.1 61.7 74.1 62.1 69.3 67.9 65.0 60.2 62.4
TiO2 0.90 0.76 0.76 0.74 0.76 0.27 0.78 0.55 0.66 0.74 0.89 0.81
Al2O3 16.4 16.3 16.5 16.2 16.2 13.1 17.4 15.1 15.6 16.2 16.3 16.2
Fe2O3 2.44 1.27 0.88 0.90 0.95 0.40 1.26 0.74 0.78 1.17 1.39 1.24
FeO 4.98 3.82 3.92 4.10 4.10 1.42 4.20 2.70 3.31 3.77 5.82 4.96
FeOT 7.18 4.96 4.71 4.91 4.95 1.78 5.33 3.37 4.01 4.82 7.07 6.08
MnO 0.13 0.09 0.08 0.09 0.09 0.03 0.07 0.04 0.07 0.06 0.15 0.12
MgO 5.12 3.29 3.05 3.34 3.38 0.66 2.08 1.50 1.72 1.92 2.99 2.68
CaO 7.90 5.34 5.12 5.43 5.45 1.64 3.72 2.97 3.38 3.22 4.67 4.24
Na2O 2.59 3.10 3.12 3.04 3.00 2.46 3.72 3.07 3.36 3.33 3.65 3.51
K2O 1.88 2.29 2.68 2.55 2.91 5.05 2.90 2.88 2.10 3.00 2.30 2.47
P2O5 0.17 0.19 0.23 0.18 0.19 0.22 0.33 0.16 0.19 0.26 0.31 0.28
LOI 0.86 1.01 0.94 0.89 0.84 0.37 0.94 0.68 0.61 0.83 0.65 0.59
Total 98.5 98.5 98.5 98.7 98.7 99.3 98.6 99.0 99.1 98.7 98.7 98.9
A/CNK 0.79 0.94 0.95 0.92 0.90 1.05 1.08 1.11 1.12 1.11 0.05 0.05
Li 16.0 45.8 52.8 43.2 46.8 59.0 114 90.6 124 145 68.9 68.4
Sc 22.7 16.6 13.8 16.6 15.1 5.24 12.5 9.44 9.19 13.5 28.6 14.8
Cr 68.4 59.3 58.0 61.1 61.5 14.7 38.0 28.2 32.2 40.4 83.5 58.0
Co 22.5 15.3 14.4 14.8 15.2 3.60 10.5 7.19 8.80 9.75 13.8 13.0
Ni 12.4 10.8 14.2 10.7 11.4 3.68 9.70 6.85 8.18 8.56 22.2 17.8
Ga 17.9 18.3 19.1 17.8 18.2 15.7 26.6 20.4 21.2 25.9 22.5 21.6
Rb 83.6 124 144 130 141 172 170 153 148 193 145 152
Sr 267 219 214 211 216 214 274 280 286 254 230 264

(continued on next page)
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Table 3 (continued)

450 Ma I-type

QL09-14 QL10-32 QL10-33 QL10-34 QL10-35 QL10-37 QL10-38 QL10-40C QL10-41C QL10-42 QL10-44 QL10-45

Y 26.7 19.6 17.5 22.0 20.2 33.5 38.9 15.5 11.6 32.4 52.7 36.2
Zr 170 191 200 194 199 137 228 194 212 258 232 216
Nb 9.4 12.6 12.4 12.1 12.3 10.4 31.2 14.6 15.2 27.8 20.6 18.8
Ba 413 470 604 470 716 1120 321 821 382 566 267 429
La 24.5 43.5 48.2 34.0 40.4 57.8 18.6 43.2 60.5 62.5 39.5 47.2
Ce 50.5 82.6 87.4 63.2 75.8 113 37.2 78.2 111 121 65.3 82.4
Pr 6.34 9.35 10.2 8.00 8.80 13.6 4.94 9.08 13.0 14.9 10.0 11.4
Nd 24.5 33.4 35.3 30.3 32.1 50.6 19.8 31.5 45.9 55.8 41.2 43.4
Sm 5.10 5.76 5.74 5.70 5.67 10.2 5.3 4.91 6.88 11.0 10.6 9.10
Eu 1.12 1.19 1.28 1.19 1.26 1.38 1.36 1.31 1.32 1.40 1.17 1.28
Gd 4.73 5.09 4.88 5.12 5.1 8.94 5.87 4.06 5.52 9.52 10.6 8.24
Tb 0.82 0.74 0.68 0.79 0.75 1.39 1.22 0.6 0.70 1.41 1.96 1.38
Dy 4.98 3.95 3.57 4.42 4.12 7.53 7.62 3.26 3.09 7.28 11.6 7.77
Ho 1.04 0.74 0.65 0.84 0.77 1.25 1.42 0.58 0.50 1.23 2.11 1.41
Er 2.88 1.99 1.80 2.28 2.06 3.08 3.83 1.54 1.12 3.05 5.41 3.68
Tm 0.42 0.29 0.26 0.33 0.30 0.41 0.54 0.23 0.14 0.41 0.75 0.50
Yb 2.73 1.82 1.70 2.20 1.89 2.50 3.45 1.47 0.96 2.51 4.52 3.09
Lu 0.42 0.27 0.26 0.33 0.30 0.37 0.5 0.23 0.16 0.37 0.62 0.43
Hf 4.44 5.06 5.46 5.65 5.47 4.4 6.72 5.53 6.06 7.73 6.69 6.70
Ta 0.61 0.92 0.92 1.07 0.99 0.93 2.41 1.32 1.40 2.17 1.22 1.46
Pb 8.6 19.7 21.1 20.9 22.6 54.5 25.6 25.9 20.2 32.3 14.3 18.0
Th 7.7 15.40 17.6 13.6 14.2 35.5 7.88 10.9 17.0 33.6 12.8 17.0
U 0.80 1.64 1.82 1.70 1.69 4.15 3.18 2.21 2.21 3.73 2.02 3.19

Table 3 (continued)
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εNd(800) and εHf(800) are negative (−9.8 and −8.4, respectively,
Table 4), indicating a crustal origin with less mantle input.

Granite QL09-18 has high SiO2 (72.3 wt.%) and Na2O (5.11 wt.%),
low K2O (0.97 wt.%) and moderate CaO (1.18 wt.%), and is
peraluminous (A/CNK: 1.23) (Table 3). Minerals include Qz, Pl and Kfs.
Minor chloride occurs along themineral boundaries andmineral cracks.
It has an enriched REE pattern with a weak negative Eu anomaly and
slightly upward HREEs (Fig. 5). Zircons are prismatic, oscillatory zoning
(Fig. 6) and give a concordantweightedmean 206Pb/238U age of 502.9±
2.0Ma (Fig. 7), representing the crystallization age. No inherited zircons
are observed in this sample. The enclosed mafic enclave QL09-19 is
composed of amphibole and plagioclase (Fig. 2) with 51.6 wt.% SiO2

(Table 3). It has similar trace element pattern to its host QL09-18
with higher elemental concentrations (Fig. 5A, B). Both QL09-18 and
QL09-19 have the same level of Eu anomaly (Eu/Eu* = 0.86, Table 3).
QL09-18 carries strong mantle isotopic signature, e.g. highly positive
εNd(503)(3.1) and εHf(503)(16.8), is less radiogenic ISr (0.7062)
yet highest Pb isotope ratios (206Pb/204Pbi = 20.474; 207Pb/204Pbi =
15.731; 208Pb/204Pbi= 39.594) (Fig. 8, Table 4). Itsmineralogy and geo-
chemical composition resemble plagiogranite despite the apparent lack
of petrotectonic constraints.

4.2. ~450 Ma I-type and S-type

S-type samples (Table 2, Fig. 2) are all highly felsic (SiO2 N 70.4 wt.%)
and peraluminous (A/CNK N 1.17) (Tables 2 and 3), consisting of Qz,
Kfs, Pl, Bt and Ms. They have LREE enriched patterns with dominant
flat HREEs (Fig. 5C, D). Two-mica granite sample QL09-02 and
QL09-07 are characterized by depleted HREEs (Fig. 5C, D), indicating
the presence of garnet as a residual phase during melting in the
source. Sample QL09-10 has elevated HREEs (Fig. 5C, D). Two fine-
grained granites (QL10-40F, QL10-41F, Fig. 5C, D; Table 2) display a
‘V’ shape REE pattern with low LREE abundances, a pronounced neg-
ative Eu anomaly and high abundance of Ta, resembling highly
evolved melts.

I-type rocks (Table 2, Fig. 2) are fine- and coarse-grainedwith grada-
tional contact between each other. Fine grained samples consist of Pl,
Qz, Amp and Bt. A/CNK values are ≤1. Coarse-grained samples consist
of Pl, Qz and Bt without Amp. They all show similar REE patterns
(Fig. 5E, F), resembling the bulk continental crust signature (BCC)
(Fig. 5) with negative Eu, Nb–Ta–Ti anomalies, a prominent positive
Pb anomaly and a flat HREE pattern.

4.3. Ages of I- and S-type samples

Ages of N1.0 Ga are given by the zircons with distinct core–mantle
structure. Zircons with ages varying from 420 Ma to 510 Ma (Fig. 7)
do not have clear differences from each other; they are all magmatic
grains showing similar structures under CL images (Fig. 6), i.e., oscil-
latory zoning, strip zoning or homogenous with Th/U ratios N 0.1
(Table S1). Young and old ages can be either on the rims or on the
centre, which rule out the possibility of cryptic core–mantle struc-
ture. The scattering concordant ages along Concordia might be com-
mon in the S-type granitoids. But the I-type samples in this study
also tend to have the similar age distributions as those S-type sam-
ples do, which is neither common nor expected. The key observation
is that they have large age variations; therefore, it is difficult to ob-
tain reliable weighted mean ages with small MSWD. Theoretically,
the youngest clustering group should be the crystallization age for
magmatic rocks. For each sample here, zircons younger than
450 Ma are mostly plotted away from the Concordia (at least not as
concordant as 450 Ma points) (Fig. 7). Therefore, we interpret
450 Ma as representing the emplacement time, which is consistent
with zircon age peaks on the histogram (Fig. 9, 206Pb/238U ages
with N90% concordance for zircons b1.0 Ga and 207Pb/206Pb ages
with N85% concordance for zircons N1.0 Ga are plotted). The
inherited zircons in these ~450 Ma rocks correspond to the ages of
aforementioned older rocks and their inherited zircons. Especially
QL09-02 has almost the same inherited zircon distribution as QL09-
01(Fig. 7), e.g. Archaean upper intercepts and inherited zircons of
~800 Ma in QL09-02 are coherent with the age of QL09-01.

Granitoids of ~450 Ma have overlapping isotopic compositions with
small negative or positive Nd and Hf isotopes (Table 4, Fig. 8). The sam-
ple depleted in HREEs (QL09-02/07) has distinct large negative
εNd(450) and εHf(450) values (−12 and −12, Table 4), indicating a
crustal origin. Importantly, its isotopes are similar to 797 Ma QL09-01



Table 4
Bulk-rock Sr–Nd–Pb–Hf-isotopic data of samples in the Qilian Block. Samples older than ~450 Ma are age corrected to their own crystallization ages and 450 Ma, respectively.

Old rocks S-type (450 Ma) I-type (450 Ma)

QL09-15 (924 Ma) QL09-01 (797 Ma) QL09-18 (500 Ma) QL09-02 QL09-10 QL09-12 QL10-40(F) QL09-14 QL10-34 QL10-37 QL10-40(C)

176Lu/177Hf 0.009 0.006 0.01 0.004 0.048 0.01 0.006 0.013 0.008 0.012 0.02
176Hf/177Hf 0.282453 (06)a 0.282112 (07)a 0.283021 (09)a 0.282174 (08)a 0.282897 (07)a 0.282539 (06)a 0.282508 (12)b 0.282665 (11)a 0.282490 (07)b 0.282519(07)b 0.282715(16)b

εHf(450) −4 −15 16 −12 0.1 −1 −0.9 2.6 −2.3 −2.3 2
3.8 (924 Ma) −8 (797 Ma) 17 (503 Ma)

147Sm/144Nd 0.1214 0.0979 0.1236 0.1319 0.1214 0.1011 0.0946 0.1214 0.1141 0.1223 0.1612
143Nd/144Nd 0.511989 (06)c 0.511621 (07)c 0.512556 (12)c 0.511821 (06)c 0.512192 (06)c 0.512183 (05)c 0.512056 (08)d 0.512210 (08)c 0.512059 (01)d 0.512093(08)d 0.512302(15)d

εNd(450) −8.3 −14.2 2.6 −12.2 −4.4 −3.4 −5.5 −3.8 −6.6 −6.4 −4.5
−3.8 (924 Ma) −9.8 (797 Ma) 3.1 (503 Ma)

87Rb/86Sr 3.61 1.16 0.29 1.49 5.1 1.4 28.56 0.89 1.75 2.28 1.55
87Sr/86Sr 0.764464 (11)e 0.722690 (12)e 0.708230 (13)e 0.724259 (09)e 0.737846 (12)e 0.719163 (09)e 0.721548 (10)f 0.714467 (11)e 0.720432 (09)f 0.729853 (09)f 0.770567 (15)f

ISr(450) 0.74134 0.7153 0.7064 0.7147 0.7051 0.7102 0.5875 0.7088 0.7092 0.7153 0.7606
0.7169 (924 Ma) 0.7095 (797 Ma) 0.7062 (503 Ma)

206Pb/204Pb 18.561 (1)g 17.799 (1)g 21.940 (3)g 17.671 (1)g 19.272 (1)g 19.159 (2)g 19.054 (1)h 18.685 (1)g 19.000 (1)h 19.199 (1)h 19.731 (1)h
207Pb/204Pb 15.656 (1)g 15.589 (1)g 15.816 (3)g 15.580 (1)g 15.693 (1)g 15.689 (2)g 15.687 (1)h 15.652 (1)g 15.734 (1)h 15.698 (1)h 15.753 (1)h
208Pb/204Pb 38.721 (6)g 38.641 (5)g 41.924 (10)g 38.278 (4)g 38.602 (5)g 38.967 (6)g 39.086 (03)h 39.300 (7)g 39.268 (04)h 40.007 (04)h 38.684 (04)h
208Pb/204Pbi(450) 38.099 38.011 39.829 37.979 38.088 38.375 38.491 38.043 38.348 39.086 38.377

37.431 (924 Ma) 37.512 (797 Ma) 39.594 (503 Ma)
207Pb/204Pbi(450) 15.64 15.576 15.741 15.576 15.670 15.678 15.665 15.624 15.714 15.679 15.735

15.612 (924 Ma) 15.560 (797 Ma) 15.731 (503 Ma)
206Pb/204Pbi(450) 18.27 17.56 20.626 17.587 18.873 18.954 18.679 18.197 18.642 18.864 19.422

17.942 (924 Ma) 17.356 (797 Ma) 20.465 (503 Ma)

a JMC475, 0.282160 ± 08 (2SD, n = 10).
b 0.282160 ± 06 (2SD, n = 12). 176Hf/177Hf are reported relative to an accepted ratio for JMC475 of 0.282160 (Nowell et al., 1998).
c J&M, 0.511110 ± 11 (2SD, n = 19).
d 0.511110 ± 07 (2SD, n = 11). 143Nd/144Nd are reported relative to an accepted ratio for J&M of 0.511110 (Thirlwall, 1991).
e NBS987, 0.710267 ± 10 (2SD, n = 13); 6.
f 0.710277 ± 15(2SD, n = 9). 87Sr/86Sr are reported relative to an accepted 87Sr/86Sr ratio for NBS987 of 0.71024 (Thirlwall, 1991).
g NBS981, 206Pb/204Pb:16.94102 ± 184;207Pb/204Pb:15.49811 ± 142;208Pb/204Pb:36.71791 ± 512 (2SD, n = 11).
h NBS981, 206Pb/204Pb:16.94083 ± 274;207Pb/204Pb:15.49706 ± 115;208Pb/204Pb:36.71478 ± 399 (2SD, n = 16).
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(Fig. 8), most likely genetically related. The calculated ISr for QL10-40F is
smaller than 0.700, which is likely an artefact in age-correction due to
high Rb/Sr (Han et al., 1997).
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5. Discussion

5.1. Origin of 924 Ma and 797 Ma magmatism

Numerous granitoids of ~900 Ma have been reported in the NQOB,
QB and NQ-UHPM belts (Guo et al., 1999; Guo and Zhao, 2000;
Gehrels et al., 2003; Zhang et al., 2003; Tung et al., 2007a; Song et al.,
2012). The 924 Ma QL09-15 is similar to those in the literature (Tung
et al., 2008). The small negative zircon εHf(943) (−4.7 to +0.21)
(Chen et al., 2007c) and whole rock εNd(943) (−1.38 to −2.84) (Chen
et al., 2007b) have led to the interpretation of reworked crust origin
(Chen et al., 2007b, 2007c). Our whole rock εHf(924) is up to 3.8. This
value is not completely against the previous interpretations but point
to a significant juvenile crust component considering the obvious crust-
al contribution demonstrated by the inherited zircons older than 1.0 Ga
(Fig. 7). Therefore, this sample represents a crustal growth event at
~920 Ma; however the exact tectonic setting is hard to conclude
based only on one sample.

QL09-01 has high SiO2 (72.7 wt.%) and Al2O3 (A/CNK: 1.31)
(Table 3) and negative εNd and εHf values (εNd(800): −9.8; εHf(800):
−8.4, Table 4), implying its dominant reworked lower crustal origin
whichmight be induced by the underplatingmantle melt. The observa-
tion including inherited zircons (Fig. 7), Discordia with an upper
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intercept of Archaean age in this study (Fig. 7), and the oldest base-
ment of 2348–2470 Ma found in Qilian Block with Archaean Hf iso-
tope model ages (Chen et al., 2007b; Li et al., 2007) have particular
importance that they of the Archaean basement underneath Qilian
Block and that Qilian Block must have been a microcontinent during
its journey of drift in the ancient ocean and later-on continental
collisions.
5.2. Origin of 503 Ma granite

The strong mantle isotopic character of sample QL09-18 (εNd(503):
3.1; εHf(503): 17, Table 4) is similar to the NQ-UHPM eclogites (Zhang
et al, 2008) (Fig. 8), and indicates that it is either directly or indirectly
derived from a depleted mantle source. Though there is no direct evi-
dence for QL09-18 as plagiogranite, we suggest the same origin for it,
i.e., it was derived from extensive differentiation (up to 80%–90% frac-
tional crystallization) (Spulber and Rutherford, 1983; Floyd et al.,
1998) from a low-K tholeiitic magma under hydrous conditions which
is a widely used model for the petrogenesis of plagiogranite (Kay and
Senechal, 1976; Flagler and Spray, 1991; Rollinson, 2009). Using the
simple batch melting model, the original mantle source can be varied
from slightly depleted to slightly enriched in LREEs, depending on the
degree of partial melting. The problem is that extensive fractional crys-
tallization could have resulted in the prominent negative Eu anomaly.
However, the enclosed mafic diorite enclave QL09-19 representing the
earlier cumulate has the identical Eu/Eu* anomaly with QL09-18. This
means that fractionation of QL09-19 would have not necessarily result-
ed in the pronounced negative Eu anomaly in QL09-18.
5.3. Origin of ~450 Ma I-type and S-type granites

5.3.1. ‘Mixing process’
The significant correlations on SiO2-variation diagrams (Fig. 4) and

isotope plots (Fig. 8) all point to an apparent ‘mixing process’ which is
further demonstrated by positive correlations between initial Pb isoto-
pic ratio and both εHf and εNd (Fig. 8). Importantly, εHf(t) is negatively
correlated with A/CNK (Fig. 8F, except QL09-18), reflecting that the
more peraluminous samples have more crustal (vs. mantle) contribu-
tions as expected. The old rocks (924 Ma, 797 Ma and 503 Ma) are
also plotted on the trend defined by these ~450 Ma granitoids (Fig. 8)
(924 Ma sample has relatively radiogenic Sr isotopes probably due to
post-magmatic modification process as it is slightly deformed). Howev-
er, it is physically unlikely that these granitoids of such a wide spatial
and temporal variation are derived from mixing two singular melts.
The inherited zircons of aforementioned ages, e.g. 924 Ma, 797 Ma
and 503Ma, repeatedly occur in the 450Ma rocks (Fig. 7). This observa-
tion, combined with the linear trends on the isotopes, suggests that
these old rocks repeatedly underwent reworking processes with vary-
ing proportions of mantle input, in other words, they were essentially
derived from the same source at different times.

Simple binary isotopic mixing modelling is used to constrain the
source materials (Fig. 8). The mantle endmember is represented by
the eclogites in the NQ-UHPM (yellow star in Fig. 8, Zhang et al.,
2008) whose protolith is the ocean crust possessing the mantle isotope
signatures. Although the Archaean basement is involved, we choose to
use Mohe basement of 2348–2470 Ma (Chen et al., 2007b; Li et al.,
2007) as crustal component because it is the oldest basement with reli-
able Hf isotopes and inherited zircons of this age are sampled in this
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study. Therefore the mantle contributions herein are underestimated.
Themodelling requires 70%–80%mantle contributions formost samples
(except for samples QL09-02). This is a strong constraint that themantle
cannot be the appropriate source as 70–80% mantle derived basalts
wouldmake thefinalmagma basaltic rather than peraluminous granitic
composition. Hence, the source candidates should be basaltic or andes-
itic (thus the derivedmelt can be andestic or granitic) and carry mantle
isotopic signatures. They are possibly (1) the subducted oceanic crust,
(2) the newly formed island arc crust; and (3) the continental arcs.
The newly formed island arc crust is unlikely as it is not easy to explain
how tomelt these topographically high level rocks that are too cold (Niu
and O'Hara, 2003, 2009) to produce granitoids at depth. The earlier ‘I-
type’ granitoids in the NQ-UHPM (Wu et al., 2001, 2007; Chen et al.,
2011) could be the continental arc and it is very likely that they play a
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role in the origin of these granitoids evident from the zircons of
N450 Ma (Figs. 7 and 9). But continental arc alone cannot explain the
large compositional variation of the 450 Ma granitoids and also lack of
reliable isotope constraints. Importantly, it requires very limited crustal
assimilation to maintain the dominant mantle isotope signature. Con-
sidering all the petrology and geochemistry, we suggest that the most
suitable candidate is the subducted oceanic crust because (1) its derived
melt is andesitic, and (2) it carries mantle isotopic signatures (see Mo
et al., 2008; Niu and O'Hara, 2009; Niu et al., 2013).

Because the inherited zircons in QL09-01 completely covers the
range defined by all the samples, it is possible that QL09-01 alone serves
as the crustal endmember which can impart its inherited zircons to the
derivativemelt. We also conductedmodelling using 800Ma QL09-01 as
crustal endmember. It gives similar results (60%–80%) (blue dash line in
Fig. 8A). This again demonstrates that 797 Ma QL09-01 itself is the hy-
brid of mantle materials and the ancient basement. Therefore, the
continental basement is involved directly or indirectly and the model-
ling and explanation are independent of which crustal endmembers
we choose.

Samples QL09-02 and QL09-07 are distinct from others in terms of
less radiogenic Nd and Hf isotopes (Fig. 8A) and obvious depleted
HREEs (Fig. 5) indicative of the presence of garnet as a residual phase
in the source region (Defant and Drummond, 1990; Atherton and
Petford, 1993; Wolf and Wyllie, 1994; Hou et al., 2012; Wang et al.,
2013). Due to the prominent negative εNd(450) and εHf(450) (−12,
−12, Table 4), the source rocks of these samples must be largely of
existing crustal origin. Note that 797 Ma QL09-01 has similar isotopes
(Fig. 8) to those of QL09-02, contain Grt and present partialmelting tex-
ture (Fig. 2) and thatQL09-02has the same inherited zircon distribution
as QL09-01 and some ages matching the age of QL09-01. These indicate
that QL09-02/07 is mostly the reworking products of 797Ma intrusions
presented by QL09-01. The more felsic composition of QL09-01 than
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QL09-02 indicates that QL09-01 may not be the immediate source and
themantle input in QL09-02 is also inevitable as evidenced by its slight-
ly higher εNd(t) and εHf(t) (Fig. 8).

To conclude, both I-type and S-type granitoids contain significant
mantle derived materials despite the obvious crustal contributions.
Therefore, they represent a crustal growth event at ~450 Ma. This
study is not the only example of ‘S-type’ granitoids representing crustal
growth. Similar samples in South China (R.X. Wu et al., 2006) also rep-
resent the crust growth although these rocks were explained as the fast
recycling of the sediments of juvenile crust.

5.3.2. Implications of tectonic context
The eclogites of MORB protolith in the NQ-UHPM belt (Yang et al.,

2002; 2006; Zhang et al., 2008) and themafic volcanism of MORB affin-
ity in the Lajishan ophiolite (Hou et al., 2005) suggest the presence of
ocean basin located between the QDB and the QB (Yang et al., 2002,
2006). The granitoids in the QB and NQ-UHPM indicate the northward
subduction underneath the QB. In the NQ-UHPM, eclogite facies meta-
morphism happened at 461–497 Ma (Song et al., 2003a; Zhang et al.,
2011) which means the collision happened shortly after. The coesite-
bearing zircons in the pelitic gneisses indicate that continental material
underthrust to depth of 100–200 km at 420–430 Ma (Song et al., 2005,
2009). These two time slots constrain that the collision must have hap-
pened in between. However, the precise timing remains unclear.

As emphasized above, these granitoids are both S-type and I-type in-
trusions. The inherited zircons of varying age (Figs. 7 and 9) indicate the
very heterogeneous source. Considering the tectonic background, the
most likely tectonic setting is the transition time between subduction
and collision, e.g. the onset of collision, where the oceanic crust
subducting together with the continentalmasses including the adjacent
continental arcs/crust fragments as well as terrigenous sediments
(Tatsumi, 2006). These subductedmore silicic components and possibly
the lower crust material all contributes to the crustal proportions in the
450Ma granitoids. Varying extents ofmelting of the crustal rockswhich
are genetically derived from the same source at different times will give
the ‘apparent mixing’ trend and the observed compositional variability
of the granitoids. The dominant S-type granitoids thereafter (this
study; Wu et al., 2002) are the products in response to the collision.
The onset of the collision at ~450 Ma is also consistent with the exhu-
mation at ~420–430 Ma (Song et al., 2005, 2009) which is normally
20–25Myrs after the onset of continental collision for the old and strong
subducting oceanic slab due to the slab break-off (van Hunen and Allen,
2011).

5.3.3. Melting of subducted oceanic crust
It has beendemonstrated that partialmelting of the last fragments of

subducted ocean crust in the collision zone is necessary and possible
(Mo et al., 2008; Niu and O'Hara, 2009; Huang et al., 2014). The hydrous
basaltic (oceanic crust) and granitic (crustal lithologies) solidus are
b650 °C at amphibole-facies (b40 km) (see Fig. 7 in Mo et al., 2008).
This temperature can be easily achieved by the last fragments of oceanic
crust because: (1) the arc crust lithosphere is hot; and (2) the conver-
gence rate is significantly reduced. Petrological estimates of P–T condi-
tions in the lowermost crust in arcs are generally high (800–1000 °C)
(Peacock, 2003). Specifically, in the NQ-UHPM belt, the granulite-
facies metamorphic rocks record 873–948 °C at 2.0 Ga and amphibolite
facies metamorphic rocks record 660–695 °C at 0.7–0.9 Ga (Song et al.,
2003b). Nevertheless, when the collision initiates, the convergence
rate would be significantly reduced at least by 50% (Royden and
Husson, 2009), which allows the last part of subducted ocean crust to
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have longer time to be heated up. All these demonstrate that arc crust
lithosphere overlying above the mantle wedge during subduction then
followed by collision is hot enough to reach ~800 °C at 40 km depth,
therefore sufficient to heat up the subducting slab to its hydrous solidus
of 650 °C at amphibole-facies (see Fig. 7 inMo et al., 2008). Partial melt-
ing at amphibole-facies is not only supported by thermal permissions
but also required by the trace elements as the majority of the samples
have flat HREE patternswithout the garnet signature (Fig. 5), indicating
garnet is not a stable phase (b40 km,Mo et al, 2008; Huang et al, 2014).

5.4. Tectonic evolution

The NQ-UHPM, located south to the QB, is a better studied continen-
tal subduction complex with subducted/exhumed oceanic and conti-
nental crustal rocks. It is reasonable to suspect that there was a cold
and fast previous subducting oceanic lithosphere to drag down the
buoyant continental materials. The basaltic rocks and MORB protolith
of eclogites in the NQ-UHPM record two episodes of seafloor spreading:
877–750 Ma (Yang et al., 2006; Zhang et al., 2011) and 550–500 Ma
(Hou et al., 2005; Song et al., 2013). If these two periods refer to the
same ocean basin spreading (Fig. 10A), the ocean must have existed
for more than 370 Ma. As no ocean crust N200 Ma has survived from
recycling (Niu et al., 2003), the subduction should have initiated at
677Ma at the latest. The problemwith this model is the lack of the geo-
logical record regarded to either the long lasting subduction-related arc
magmatism after 677 Ma prior to 550 Ma or the formation of ocean
crust at ocean ridges between 877–750 Ma and 550–550 Ma. Song
et al. (2013) suggest that the inherited age of 710 Ma in the eclogite
(Zhang et al., 2007) in the NQOB is regarded as the seafloor spreading.
We partly agree but consider that it more likely records the earliest
back-arc basin opening between QB and Alashan Block. The back-arc
spreading at ~710 Ma is possible as back-arc basin extension can be
shortly after the initiation of cold and fast subduction within 1 Ma
(Martinez andTaylor, 2006) due to the extensivemantlewedge convec-
tion resulting from steep subduction which is comparable to the mod-
ern Mariana subduction zone. Mantle-derived 503 Ma granite might
be the product in the back-arc setting. Also the back–arc spreading
since 710 Ma can explain the quiescence of magmatism after 710 Ma
and before 550Ma. Importantly, the abundant concordant ages younger
than 450 Ma (Figs. 7 and 9) could be the xenocrysts and compensate
some unexposed or unsampledmagmatic events during this quiescence
period. These inherited ages could refer to either the oceanic crust
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formation or the subduction-related arcmagmatism. In eitherway, they
record the magmatic events. The 450 Ma magmatism is genuinely low
temperature hydrous partial melting (b650 °C), therefore, it has well
preserved these xenocrystal zircons. Note that our model is different
from the one proposed by Song et al. (2013, 2014). We suggest that
the Palaeo-Qilian Ocean located between the Qaidam Block and the
Qilian Block (Fig. 10A) and the whole NQOB area was the back-arc,
while they think that the Palaeo-Qilian Ocean located in the NQOB
area. In our model, closure of the back-arc basin resulted in the subduc-
tion complex in the NQOB and probably has led to the secondary back-
arc basin opening further north. The ~450 Ma granitoids are the prod-
ucts in response to the closure of the Qilian Ocean and the onset of the
Qilian–Qaidam continental collision.

Alternatively, 877–750Ma (Yang et al., 2006; Zhang et al., 2011) and
550–500Ma (Song et al., 2013) could record oceanic crust of two differ-
ent ocean basins, e.g. Neoproterozoic Ocean and Qilian Ocean, respec-
tively (Fig. 10B) (Yang et al., 2006). The NQOB and NQ-UHPM are two
independent tectonic units due to the paired subduction at the same
time around N500–400 Ma (Fig. 10B) (Yang et al., 2006). This model
may explain the lack of direct geological record between 877–750 Ma
and 550–500 Ma. But the NQOB is a cold subduction zone (Song et al.,
2007; Zhang et al., 2007) which requires the old oceanic lithosphere.
In Yang's model (Yang et al., 2006), the 550–550 Ma ocean basin lived
only for ~50Ma, which is not old enough to induce the cold subduction.
We suggest that our model is more reasonable, but still requires more
geological evidence.
5.5. Nature of the Qilian Block

Some people consider ~920 Ma intrusions/gneisses are the base-
ment of the Qilian Block (Zhang et al., 2003; Tung et al., 2007a, 2008).
The Palaeoproterozoic and Archaean basement have to some extent
been overlooked. In our study, all the inherited zircons N1.0 Ga defined
a Discordia with an Archaean intercept of 2712 Ma (the final panel in
Fig. 7) which is also seen in the individual sample, e.g. QL09-01 and
QL09-02 (Fig. 7). These clearly confirm the existence of Archaean base-
ment. Especially, the isotope modelling (Fig. 8) emphasizes the impor-
tant role of Archaean basement in the ~450 Ma magmatism. The
Qilian Block must once be a microcontinent during the assembling
and the breaking-up of supercontinent and experienced multiple
reworking processes later on. The magmatism of ~920 Ma and
~800 Mawas previously interpreted to be related to the Rodinia assem-
bly (Guo et al., 1999; Wan et al., 2001, 2001b; Zhang et al., 2003; Tseng
et al., 2006; Song et al., 2010b, 2013) and break-up (Zhang et al., 2003; Li
et al., 2008; Song et al., 2010b), respectively. Based on our data, we can
only say that 924 Ma and 797 Ma magmatic episodes are respectively
crustal growth and crustal reworking processes. It has been debated
that the basement of the Qilian Block has a closer link to Yangtze Craton
(YC) over North China Craton (NCC) (Tung et al., 2007a and references
therein) because of nonemagmatism during 0.6–1.6 Ga, especially 0.8–
0.9Ga inNCC (Fig. 9C,modified after Grimmer et al., 2003). Probably the
most obvious conclusion from Fig. 9C is that the distribution of
magmatism in the QB matches neither NCC nor YC. Based on Fig. 9,
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from 1.6 Ga to Archaean, the QB is comparable to both NCC and YC or
maybe more closer to NCC. During 0.6–1.6 Ga, the QB and YC experi-
enced coherent history. It might be arbitrary to say that the QB has YC
affinity only because of the 0.8–0.9 Ga magmatism, especially the new
finding of the ~0.9 Ga continental rifting magmatism in the NCC (Peng
et al., 2011a, 2011b) which could be related to the 924 Ma in this study.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gr.2014.02.010.
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