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We discuss the overall characteristics of a recently recognized kamafugite province in West Qinling,
China, using field observations and geochemical data. We discuss the petrogenesis of the kamafugites
using new bulk-rock major and trace element data and Sr–Nd isotope compositions of representative
samples together with the literature data (in Chinese) and comparing them with type kamafugite suites
from Italy, Brazil and Uganda. All these four kamafugite suites show OIB-like rare earth element (REE)
patterns, but are much more enriched than OIB in the progressively more incompatible elements. The
West Qinling kamafugite samples resemble closely the Ugandan and Brazilian suites in having a negative
anomaly of K, P and Ti and a positive Nb–Ta anomaly, yet the Italian suite shows conspicuously a negative
Nb–Ta anomaly. The four kamafugite suites have different eNd(t) values and 87Sr/86Sri ratios, implying
their distinct sources and source histories. We consider that the ideal sources for kamafugite magmas
are most likely metasomatized sub-continental lithosphere with components of ancient seafloor sub-
ducted calcareous terrigenous sediments. The close association of kamafugite with carbonatite world-
wide, including the West Qinling suite, is consistent with both being derived from a single CO2-rich
silicate parental magma segregated during ascent as a result of decompression-induced immiscibility.
In terms of both sources (or source histories) and processes, our simple interpretation can effectively
explain the petrogenesis of all the apparently different kamafugite suites suggests that the petrogenesis
of kamafugites may actually be simple. Further effort should aim to test whether our interpretation is
indeed valid globally.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Kamafugite is a term describing several alkaline volcanic rocks
including katungite, mafurite and ugandite following the study of
alkaline volcanic rocks in the Toro-Ankole volcanic field (Sahama,
1974). These rocks are characterized by the presence of modal kalsi-
lite, melilite and perovskite as a result of their extreme silica under-
saturation, low Al, K-enrichment and extremely high Ca (Tappe et al.,
2003). IUGS recommendations (Le Maitre, 2002) for the kalsilite-
bearing rocks eliminate the local names but retain the term kama-
fugite as a rock series name. Kamafugitic rocks have low Al2O3 but
high CaO (usually > 12%), and represent primitive ultrapotassic rocks
which are rare yet found on all continents (Tappe et al., 2003). Foley
et al. (1987) consider kamafugite as a potential end-member among
peralkaline magmas. Tappe et al. (2005) suggested that kamafugites
may be genetically related to some ultramafic lamprophyres, and
some of these may even contain diamonds (Digonnet et al., 2000;
Tappe et al., 2004). It is thus important to understand the petrogen-
esis of kamafugitic rocks and their derivatives.

Since Holmes and Harwood (1932) first described the upper
Pleistocene (<50 ka, Boven et al., 1998) kalsilite-bearing lavas that
were named later by Sahama (1974) as kamafugite series in South-
west Uganda, kamafugites have been reported in a number of loca-
tions worldwide (e.g., Yu et al., 2001a, 2001b, 2003a, 2003b, 2004,
2005, 2009; Wang and Li, 2003; Dong et al., 2008; Carlson and
Nowell, 2001; Prelevic et al., 2005), in particular the well-studied
type examples such as the middle Pleistocene kamafugites in Italy
(Gallo et al., 1984; Stoppa and Cundari, 1998; Peccerillo, 1999;
Stoppa et al., 2002; Di Battistini et al.,2001; Federico and Peccerillo,
2002), the late Cretaceous suite in Brazil (Gibson et al., 1995; Sgarbi
and Gaspar, 2002). However, the origin of kamafugites remains not
well understood (Foley, 1992; Gittins and Harmer, 2003). An impor-
tant observation is that most kamafugites worldwide coexist with
carbonatites, including all the cases mentioned above. A genetic
link between kamafugite and carbonatite melts may indeed exist
Fig. 1. Sketch map of the West Qinling kamafugite distribution (after Yu et al., 2005).
indicate sample locations of the literature data. The two simplified maps on the right sh
as proposed for Uganda (Bailey and Collier, 2000; Stoppa et al.,
2000; Tappe et al., 2003; Rosenthal et al., 2009), Italy (Stoppa and
Lavecchia, 1992; Stoppa and Cundari, 1995; Stoppa and Woolley,
1997) and Brazil (Brod et al., 2001, 2008; Junqueira-Brod et al.,
2005; Barbosa et al., 2012) kamafugites. However, a genuine petro-
genetic relationship between kamafugite and carbonatite melts
have not been convincingly established. In this context, Gittins
and Harmer (2003) summarized three scenarios: (1) a silicate
parental magma capable of crystallizing carbonate minerals to form
carbonatite; (2) carbonatite and kamafugite have different parent
magmas; (3) a carbonate-rich silicate magma splits into two immis-
cible liquids, one carbonatite magma and the other silicate magma.

Although much effort has been expended on the petrogenesis of
the West Qinling Miocene kamafugite–carbonatite association
since its recognition (Yu et al., 2001a, 2001b, 2003a, 2003b, 2004,
2005, 2009; Wang and Li, 2003; Dong et al., 2008), little is known
to the international community about this kamafugite province ex-
cept for a descriptive report in English in a rarely accessible journal
(see Yu et al., 2003b). The purpose of this paper is to introduce this
important kamafugite province to the international community
and to offer our new petrogenetic perspectives using new data
on representative kamafugite samples together with the data in
the Chinese literature (see references by Yu and the co-workers).
In discussion, we compare the West Qinling kamafugite suite with
those of type kamafugite suites from Uganda, Brazil and Italy with
the aim of better understanding the petrogenesis of the West Qin-
ling kamafugite in a global context by exploring the possibility of
kamafugite and carbonatite magmas being the two products of
immiscibility from a single primitive carbonate-rich silicate melt.

2. Geology and samples

The West Qinling kamafugites are distributed in Lixian County,
Gansu Province, China (in the area of 104�400–105�150E, 33�440-
34�150N), geologically in the complex Caledonian-Hercynian West
Locations of samples for our new data are indicated with closed stars. Open stars
ow the geographic/geological context of the West Qinling kamafugite field.
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Qinling Orogenic Belt near the triple junction of the Yangtze Cra-
ton, North China Craton and Tibetan Plateau (Fig. 1). The North Chi-
na-Yangtze collision in the early Mesozoic and the Tibetan Plateau
Kamafugite

Pyroclastic strata

(a)

(c)

Fig. 2. (a) Outcrops of West Qinling kamafugites, coexisting with pyroclastic strata. (b
specimen of kamafugite and carbonatite ‘‘inclusions’’ with varying shape and size widesp
Ocelli with voids.

(a)

(c)

Fig. 3. Photomicrographs of the West Qinling kamafugites. (a) Sample LN10-002 (XPL),
Sample LN10-004-1 (XPL), diopside and nepheline phenocrysts in the diopside matrix; (c
LN10-024 (PPL), diopside phenocrysts and quenched microlites spread randomly. Perov
uplift since the Cenozoic (Gao et al., 1996; Zhang et al., 2001; Xu
et al., 2002) further complicated the geology of the region. The
West Qinling kamafugites have a Cenozoic eruption age of
Pyroclastic strata

(b)

(d)

) Stratified pyroclastics, composed of carbonatite and kamafugitic clasts. (c) Hand
read in kamafugite. (d) Close-up of portion of (c) as indicated, showing the carbonate

(b)

(d)

silicate minerals (nepheline and diopside) spread around a carbonate globule; (b)
) Sample LN10-004-2 (XPL), olivine, nepheline and diopside phenocrysts; (d) Sample
skite and magnetite are throughout the matrix.
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�23 Ma (Yu et al., 2005) with >30 outcrops scattered in a
�3000 km2 area (Yu et al., 2003a, 2003b, 2004). They mainly occur
as pipes/diatreme-tuff rings and subvolcanic intrusions with a sin-
gle outcrop diameter normally <1 km2. There are also lava flows
that cover areas of a few square kilometers (Yu et al., 2003b).
The West Qinling kamafugites on all outcrops showing coexistence
with carbonatite lava flows and pyroclastic strata (Fig. 2a and b),
provides a prime opportunity to study the petrogenesis of this rare
rock association.

An interesting observation is the amygdale-like carbonatite
inclusions with varying shape and size abundant in the kamafug-
ites (Fig. 2c and d). These called ‘Ocelli’ (Wang et al., 2007) are
half-hollowed on outcrop and hand specimen scales with abundant
fine euhedral diopside crystals at the rims under microscope
(Fig. 3a).

The West Qinling kamafugites are porphyritic with 5–10 vol.%
phenocrysts dominated by anhedral olivine (1–2 mm in size),
and to a lesser extent by subhedral–anhedral clinopyroxene and
nepheline (0.5–1 mm in size). The groundmass consists of euhedral
clinopyroxene and interstitial nepheline. Euhedral Ti-magnetite
and perovskite, both as microphenocrysts and microlites, are
important accessory phases in most samples (Fig. 3a–d). See Yu
et al. (2003b) for petrographic details.
3. Analytical methods and procedure

A total of 13 kamafugite samples were collected from West Qin-
ling, from which we chose four freshest ones for detailed geochem-
ical analysis. Weathered surfaces, pen marks and saw marks were
ground off and thoroughly cleaned. The samples were then crushed
into chips of 40 mesh size to remove painstakingly phenocrysts un-
der a binocular with the aim of obtaining kamafugite melt compo-
sitions best represented by the fresh matrix. The matrix material
was then ultrasonically-cleaned with Milli-Q water and dried be-
fore powdered using an agate mortar to less than 200 mesh for
whole rock analysis.
Table 1
Bulk rock major (wt.%) and trace element (ppm) analysis for West Qinling kamafugites.

LN10-001 LN10-002 LN10-015 LN10-029

SiO2 38.8 39.9 39.7 39.9
TiO2 3.27 3.32 3.31 4.26
Al2O3 7.71 7.94 7.96 9.64
TFe2O3 11.0 11.2 11.3 12.5
MnO 0.15 0.14 0.17 0.15
MgO 16.8 15.1 15.1 8.91
CaO 12.8 13.0 13.1 13.3
Na2O 1.79 2.43 2.03 3.44
K2O 1.05 1.48 1.28 3.31
P2O5 1.46 1.20 1.45 1.12
LOI 4.87 3.99 4.42 3.11
Total 99.63 99.68 99.68 99.56
Mg#a 0.75 0.73 0.73 0.59
K2O + Na2O 2.84 3.91 3.31 6.75

Li 12.9 14.2 12.7 14.6
Be 2.29 2.08 2.27 2.29
Sc 18.7 18.7 19.6 21.6
V 161 153 174 235
Cr 661 614 650 505
Co 55.9 57.8 59.3 53.0
Ni 424 450 449 292
Cu 84.4 85.5 97.7 58.1
Zn 117 117 123 128
Ga 15.9 16.4 16.6 19.1
Ge 1.33 1.39 1.37 1.43
Rb 30.5 37.4 34.4 69.3

a Mg# = �molar Mg/(Mg + Fe2+); FeO (wt.%)= 0.8998 � Fe2O3 (wt.%).
Bulk-rock major elements were determined using X-ray fluores-
cence (XRF) method on fused glass beads, and a wide range of trace
elements were analyzed by solution inductively coupled plasma
mass spectrometry (ICP-MS) after acid digestion of samples in Tef-
lon bombs at the State Key Laboratory of Continental Dynamics of
Northwest University, Xi’an, China. Analytical details and analysis
of reference materials are reported in Rudnick et al. (2004). Bulk-
rock Sr–Nd isotopes were analyzed using Thermo Neptune Multi-
collector inductively coupled plasma Mass Spectrometer (MC
ICP-MS) at Durham University, UK (Dowall et al., 2003). Major ele-
ment compositions of the carbonate globules were obtained using
electron probe micro-analyzer JXA8100 at Chang’an University,
China. The operating conditions were a 15 kV accelerating poten-
tial with a probe current of 10 nA and the electron beam diameter
was 5 lm.
4. Geochemistry of West Qinling kamafugites

The new bulk-rock major and trace element data for West Qin-
ling kamafugites are given in Table 1, and the new Sr–Nd isotope
data are given in Table 2. We also give the literature data in Appen-
dix 1.
4.1. Major and trace element data

The West Qinling kamafugite samples have low SiO2 (35.9–43.2
wt.%; average [N = 71] = 39.7 wt.%), moderate K2O (0.16–4.21 wt.%;
average [N = 71] = 2.03 wt.%), varying total alkalis (0.65–7.03 wt.%),
low Al2O3 (6.03–11.0 wt.%; average [N = 71] = 8.83 wt.%) and high
CaO (10.7–18.1 wt.%; average [N = 71] = 13.5 wt.%). They have high
P2O5 (up to 1.70 wt.%) and MgO (up to 17.5 wt.%) with varying Mg#

(0.56–0.76). In the TAS diagram (Fig. 4), most of the West Qinling
samples plot in the foidite field. Importantly, the West Qinling kama-
fugite samples have high Ni (78–612 ppm; average [N = 49] =
297 ppm,) and Cr (150–825 ppm; average [N = 49] = 362 ppm),
which correlate positively with Mg# (Fig. 5a and b).
LN10-001 LN10-002 LN10-015 LN10-029

Sr 1367 1299 1526 1582
Y 32.8 33.2 34.6 38.2
Zr 398 395 410 425
Nb 136 137 141 148
Cs 0.38 0.51 0.36 0.64
Ba 729 1626 1590 910
La 122 126 129 111
Ce 237 239 244 215
Pr 26.8 27.3 28.0 25.2
Nd 102 103 107 96.9
Sm 18.0 18.2 18.7 17.9
Eu 5.17 5.34 5.49 5.36
Gd 13.4 13.6 13.9 14.1
Tb 1.74 1.76 1.8 1.87
Dy 8.05 8.18 8.45 9.00
Ho 1.22 1.23 1.28 1.41
Er 2.82 2.83 2.91 3.31
Tm 0.32 0.32 0.33 0.38
Yb 1.74 1.75 1.78 2.12
Lu 0.22 0.22 0.23 0.28
Hf 8.09 8.17 8.27 9.10
Ta 6.19 6.28 6.42 7.77
Pb 5.98 4.76 5.69 2.85
Th 16.0 16.1 16.2 13.7
U 3.41 3.43 3.45 3.64
dEu 0.97 0.99 1.00 0.99
[La/Yb]N 50.6 51.5 51.9 37.7



Table 2
Bulk rock Sr–Nd isotope analysis for West Qinling kamafugites.

87Rb/86Sr 87Sr/86Sr 2r 87Sr/86Sri
147Sm/144Nd 143Nd/144Nd 2r 143Nd/144Ndi eNd(t)

LN10-001 0.0642 0.704336 0.000015 0.704315 0.1094 0.512838 0.000008 0.512822 3.6
LN10-002 0.0827 0.704281 0.000010 0.704254 0.1101 0.512853 0.000011 0.512837 3.9
LN10-015 0.0649 0.704779 0.000010 0.704758 0.1088 0.512829 0.000009 0.512813 3.4
LN10-029 0.1259 0.703996 0.000010 0.703955 0.1150 0.512856 0.000007 0.512839 3.9

(a) 87Rb/86Sr and 147Sm/144Nd are calculated using whole-rock Rb, Sr, Sm and Nd contents in Table 1.
(b) 87Sr/86Sri = 87Sr/86Sr – 87Rb/86Sr � (ekt � 1); 143Nd/144Ndi = 143Nd/144Nd – 143Sm/144Nd � (ekt � 1). In the calculation, t = 23 Ma.
(c) eNd(t) = [(143Nd/144Nd i)/(143Nd/144NdCHUR) � 1] � 10,000; 143Nd/144NdCHUR = 0.512638.

Fig. 4. The TAS (Na2O + K2O vs. SiO2) diagram to show West Qinling (WQ)
kamafugite compositions. For comparison, the type examples such as the Italy
(Conticelli and Peccerillo, 1992; Di Battistini et al., 2001; Castorina et al., 2000;
Peccerillo, 2004; Lavecchia et al., 2006), Uganda (Tappe et al., 2003; Stoppa et al.,
2000), and Brazil (Carlson et al., 1996; Araujo et al., 2001; Sgarbi and Gaspar, 2002;
Junqueira-Brod et al., 2005; Carlson et al., 2007; Melluso et al., 2008) kamafugites
are also plotted together with the West Qinling kamafugite data in the literature
(Yu et al., 2003b, 2004, 2009; Wang and Li, 2003; Dong et al., 2008). And all the data
had been volatile corrected (Le Maitre, 1989).
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Fig. 5. (a) Ni vs. Mg# and (b) Cr vs. Mg# diagrams to compare kamafugites from
West Qinling with several type suites worldwide. The data sources are: Conticelli
and Peccerillo (1992), Carlson et al. (1996), Castorina et al. (2000), Di Battistini et al.
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et al. (2008), Yu et al. (2004, 2009).
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The West Qinling kamafugite samples are highly enriched in
light rare earth elements (LREE) and other incompatible trace ele-
ments. They have OIB-like (but more enriched) REE patterns
(Fig. 6a) with [La/Yb]N = 37.7–51.9. In the primitive mantle nor-
malized spider diagram (Fig. 6b), they display negative anomalies
for Rb, K, Pb, P and Ti, and no anomalies for HFSEs (e.g., Nb, Ta,
Zr and Hf).

4.2. Sr–Nd isotope data

The four new 87Sr/86Sri ratios are all in the range of reported
87Sr/86Sri = 0.703810–0.705390 (Yu et al., 2001a, 2004, 2009; Dong
et al., 2008), with an average value of 0.704385 (N = 42). The
143Nd/144Ndi ratios give eNd(t) values in a narrow range (1.31–
5.74). Fig. 7 shows the new Sr and Nd isotopic data and the literature
data (Yu et al., 2001a, 2004, 2009; Dong et al., 2008). The mantle ar-
ray, DM, HIMU, EMI, EMII mantle isotope end-members are also indi-
cated for comparison. Most of the West Qinling kamafugite samples
plot within the mantle array with several samples off to the higher
87Sr/86Sri values in the vicinity of the bulk silicate earth (BSE).

5. Comparison with type kamafugites from Italy, Uganda and
Brazil

In order to better understand the petrogenesis of the West Qin-
ling kamafugites, we compare them with the well-known and bet-
ter-studied kamafugite suites worldwide, in particular those type
suites from Italy (Gallo et al., 1984; Stoppa and Cundari, 1998; Pec-
cerillo, 1999; Stoppa et al., 2002; Di Battistini et al., 2001; Federico
and Peccerillo, 2002), Uganda (Bailey and Collier, 2000; Stoppa et al.,
2000) and Brazil (Gibson et al., 1995; Sgarbi and Gaspar, 2002).

All the four kamafugite suites share the same characteristics of low
SiO2 (<46 wt.%, Figs. 4 and 8), low Al2O3 (average [N = 158]� 8.4 wt.%),
high CaO (average [N = 158]� 13.1 wt.%) and high MgO (average
[N = 158]� 13.1 wt.%). The Brazil suite shows the largest range of
SiO2 (30.0–45.7 wt.%, Figs. 4 and 8) and Mg# (0.42–0.84, Figs. 5a and
b and 9). The Italian suite exhibits highest K2O contents (4.6–
9.6 wt.%, Fig. 8) and total alkalis (up to 9.9 wt.%, Fig. 4).

Fig. 5a and b illustrates that the West Qinling kamafugite sam-
ples lie on a trend defined by the Ugandan and Brazilian suites,
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which are broadly consistent with varying extents of fractional
crystallization of olivine and spinel (also clinopyroxene) with
decreasing Mg#. However, the Italian sample suite shows the
lowest Ni and lower Cr concentration at a given Mg# relative to
the Uganda and Brazil suites, suggesting somewhat different mag-
ma sources or source histories.

Kamafugites from West Qinling, Uganda and Brazil show ex-
treme enrichment in incompatible elements (Fig. 10a and b) with
high LREEs, low HREEs and elevated LREEs/HREEs ratios, suggest-
ing the presence of garnet as a residual phase in the melting region.
The [La/Yb]N ratios of West Qinling, Uganda and Brazil suites are
31.1–63.3, 93.7–153.1 and 23.1–197.4, respectively. This suggests
the possibility that all these three kamafugite suites share similarly
enriched sources. The Italian suite displays a similar REEs patterns
with [La/Yb]N = 23.0–104.4, but an obvious negative Eu anomaly
(Eu/Eu� = 0.54–0.80). Because the Italian suite is similarly primitive
in terms of Mg# (Fig. 9), the negative Eu anomaly is most likely a
source inheritance (see Niu and O’Hara, 2009), rather than the ef-
fect of plagioclase crystallization as plagioclase is not a liquidus
phase in kamafugitic rocks, which is consistent with plagioclase
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absence and phenocrysts or microcrysts in the rocks. The slightly
varying REE patterns (e.g., LREEs/HREEs variation) among these
world kamafugites may result from (1) source variation, (2) vary-
ing extent of melting, and (3) different magma evolution histories,
recognizing that (3) is largely determined by (1) and (2).

Significant differences among the four sample suites are con-
spicuous on the primitive mantle normalized spidergram. Kama-
fugites from West Qinling, Uganda and Brazil have negative Rb,
K, P and Ti anomalies (Fig. 10b), while they all have elevated abun-
dances of large ion lithosphile elements (LILEs, e.g., Ba, Rb, Th, U,
etc.), similar to, but much more enriched than, average OIB. The
depletion of Rb, K, P and Ti may be caused by feldspathoid/nephe-
line, apatite and perovskite fractionations. The Italian kamafugite
suite samples are distinctively different; they are depleted in Nb,
Ta, P and Ti and rich in Rb, Ba, Th, U, K, especially Pb, a typical sig-
nature of ‘‘island arc rocks’’ or continental crustal materials (i.e.,
the familiar ‘‘arc signature’’ or ‘‘crustal signature’’). Lavecchia
et al. (2006) suggested this distribution requires a high CO2 fugac-
ity in the source region to allow HFSE fractionation which could
also produce the Eu anomaly. While this interpretation may be
possible, it is more likely a source inheritance, that is, the Italian
suite most likely has a continental crustal material contribution
in the course of their petrogenesis (see below).

Broadly, the West Qinling, Uganda and Brazil suites have sim-
ilar trace element systematics, whereas the Italy suite differs
(Fig. 10a and b). In Sr–Nd isotope space, all the sample suites to-
gether define a curvilinear trend from the West Qinling suite
with the most depleted mantle signature (87Sr/86Sri = 0.70381–
0.70539, eNd(t) = 1.3–5.7), to the Uganda suite (87Sr/86Sri =
0.704594–0.705374, eNd(t) = �4.7 to �1.2), to the Brazilian suite
(87Sr/86Sri = 0.704311–0.707339 and eNd(t) = �10.0 to �1.0), and
to the most enriched end given by the Italian suite
(87Sr/86Sri = 0.709604–0.711930, eNd(t) = �12.5 to �8.7) (Fig. 11).
While the former 3 suites define a trend almost parallel to the
mantle array, extending into the enriched field with high
87Sr/86Sri and low eNd(t), the Italian kamafugite samples plot in
a distinct region with even lower eNd(t) and higher 87Sr/86Sri

away from the mantle array. With all the four suites considered,
the data define an overall mixing relationship between a de-
pleted end-member (more depleted than the West Qinling suite)
and an enriched end-member (more enriched than the Italy
suite), probably involving mature continental crustal material
as suggested by the ‘‘crustal signature’’ (Fig. 10b). Crustal con-
tamination (Conticelli and Peccerillo, 1992; Serri et al., 1993;
Peccerillo, 2003; Tappe et al., 2003; Conticelli et al., 2004) could
be invoked, yet the Italian kamafugite samples are very primitive
with Mg# = 0.64–0.82, which rules out crustal assimilation as the
cause of the enriched isotopes and ‘‘crustal signature’’ in terms
of incompatible elements (Fig. 10a and b). However, terrigenous
sediment contribution to the magma source region is a more
likely possibility (see Fig. 11). Mantle lithosphere metasomatism
is possible (Castorina et al., 2000; Tainton and McKenzie, 1994),
but this would require the metasomatic agent to have a conti-
nental crustal signature in the first place (Niu et al., in
preparation).
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6. Discussions

6.1. Magma evolution

All the data and above discussion argue explicitly that kamafug-
ites are of mantle origin (very high Mg#) through partial melting of
highly enriched (or pre-metasomatized) sources in the garnet peri-
dotite stability field. The varying incompatible elements abun-
dances and radiogenic isotopes ratios of the kamafugites reflect
their source differences inherited from previous histories.

As mantle-derived melts with Mg# > 0.72 are in equilibrium
with mantle olivine, melts with Mg# > 0.72 can all be considered
as close to primary melts, and the melts with varying Mg# values
higher than 0.72 could be interpreted as primary melts resulting
from varying extent and pressure of melting (see Niu and O’Hara,
2008). However, with the exception of the Italian suite, the posi-
tively correlated variation of Mg# with Ni and (also Cr) may sug-
gest that primary kamafugite melts could all have very high Mg#,
perhaps P 0.84 (Fig. 9). In this case, most of the West Qinling,
Uganda, Brazil and Italian samples would represent products of
fractional crystallization (of olivine, spinel, clinopyroxene) from
their respective primary magmas (Fig. 5a and b). However, it
should be noted that our new data on the 4 West Qinling kamafug-
ites are carefully selected groundmass materials that represent the
melt with varying Mg# from 0.59 to up to 0.75, yet the literature
data represent bulk-rock compositions that represent the mix be-
tween the melt (groundmass) and cumulate phenocrysts (e.g., oliv-
ine, spinel, etc.). Hence, the Mg# vs. Cr and Mg# vs. Ni trends
defined by bulk-rock composition of all the sample suites (Fig. 5a
and b) are likely the effect of both fractional crystallization and
crystal accumulation. It follows that the unusually low Cr and Ni
of the Italian samples (Fig. 5a and b) must have inherited from
source rocks with low Ni and Cr (see below).

The average Mg# value of 0.71 (N = 110 kamafugite samples)
plus the high contents of incompatible elements of all these type
kamafugites manifests the overall primitive nature of these mag-
mas with no or rather limited crustal contamination.
6.2. Immiscibility between kamafugitic magma and carbonatic magma

An important observation is that of the 450 carbonatite occur-
rences, 377 of them are clearly associated with highly alkaline mag-
matic rocks (Woolley, 2003). Specifically, many kamafugite suites
are known to be associated with carbonatite, including, for exam-
ple, those from Italy (Lavecchia and Stoppa, 1996; Stoppa and
Woolley, 1997; Stoppa et al., 2002), the west branch of the East
African rift (Vinogradov et al., 1980; Stoppa et al., 2000; Rosenthal
et al., 2009; Eby et al., 2009), Brazil (Brod et al., 2001, 2008; Barbosa
A
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Fig. 12. Photomicrographs (PPL and XPL) of a carbonate globule hosted in West Qinling
calcite dominated core (see text in detail).
et al., 2012) and West Qinling (Yu et al., 2001a). With all these con-
sidered, we hypothesize that kamafugite and carbonatite have
formed/solidified from two immiscible liquids derived from a com-
mon CO2-rich silicate parental magma with the immiscibility tak-
ing place probably during ascent/decompression. This is probably
true for the West Qinling kamafugite-carbonatite association in
particular.

The West Qinling kamafugite suite is characterized by the se-
quence of, from bottom to top, carbonatite flows/tuffs/debris,
kamafugite volcanic breccias, vesicular and massive kamafugite
flows (see Fig. 2; also see Yu et al., 2003b), a similar volcanic se-
quence being observed in San Venanzo and Cupaello, Italy (Stoppa
and Cundari, 1995). In addition, Yu et al. (2003b) found that car-
bonatite ejecta and massive blocks are mixed with kamafugite
breccias and lapilli. This texture is very similar to carbonatitic-
kamafugitic tuffs from Uganda and Italy (Stoppa et al., 2003). All
these observations substantiate our hypothesis that both kamafug-
ite and carbonatite share a common parental magma. Furthermore,
on both outcrop and hand-specimen scales, the kamafugite sam-
ples contain abundant ‘‘vesicles’’ of varying shape and size partially
filled with carbonate minerals with voids (or ‘‘Ocelli’’; Fig. 2c),
which are not carbonate amygdales, but are most consistent with
being parcels of trapped carbonatite melt at the time of kamafugite
host magma eruption (thus being quenched/solidified). Because of
the lower liquidus and solidus temperatures of carbonatite melts,
they crystallized/solidified as the host kamafugite had already
cooled under sub-solidus conditions. This later and lower-temper-
ature crystallization of carbonate minerals together with associ-
ated degassing explains the volume shrink and thus the voids.
This further corroborates our hypothesis that both kamafugite
and carbonatite melts share a common parental magma.

In addition, there are abundant carbonatite globules with char-
acteristic textures in the kamafugite host (see Fig. 12). Electron
probe analysis shows a large compositional variation between
the rim and core of a carbonatite globule. For example, MgO de-
creases from �19.9 wt.% at the rim (dominated by dolomite) to
�0.3 wt.% in the core (dominated by calcite), while CaO increases
from 36.9 wt.% to 62.1 wt.% accordingly. The high MgO and low
CaO rim reflects the tendency towards equilibrium with (driven
by the compositional gradient) the host kamafugitic matrix. As it
is physically difficult to develop such large compositional gradient
in the solid state, we interpret the compositional gradient to have
developed in the molten state, which is again consistent with our
hypothesis that the carbonatite globules were once part of, and ex-
solved from, the CO2-rich silicate parental magma (see below).

Our single parental magma hypothesis on the petrogenesis of
the West Qinling kamafugite–carbonatite association has been
suggested in the literature (Freestone and Hamilton, 1980; Kjarsg-
aard and Peterson, 1991; Hamilton and Kjarsgaard, 1993; Petibon
LN10-024(PPL)

0.25mm

kamafugite. The globule changes in composition from dolomite dominated rim to
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et al., 1998; Eby et al., 2009) that the process of ‘‘immiscibility’’ can
effectively explain the relationship between kamafugite and car-
bonatite association, a concept which has been discussed since
the discovery of natrocarbonatitic lavas in the crater of the Oldo-
inyo Lengai volcano in Tanzania (Dawson, 1962). That is, a CO2

highly enriched primary silicate magma formed at depth with high
mutual solubility may segregate into two coexisting, but mutually
immiscible separate melts, a carbonate melt parental to the car-
bonatite and a silicate melt parental to the kamafugite melt.

The stratigraphic inter-layering of the two magmatic lithologies
in West Qinling (see Fig. 2a and b) is the most convincing evidence
for the carbonate–kamafugite cogenetic association. The carbona-
tite ‘‘Ocelli’’ and ‘‘globules’’ are further evidence for incomplete
separation of the two immiscible liquids on smaller scales. After
the kamafugitic melt has quenched and solidified during eruption,
the immiscible carbonate melt droplets remain in the liquid state.
The subsequent cooling resulted in the progressive solidification of
the silica-rich carbonate melt, crystallizing silicate minerals at the
outer edges and carbonate minerals within the globules, which are
consistent with the observation that subhedral–euhedral diopside
crystals spread around the carbonate globules in thin sections (see
Figs. 3a and 12). The breakdown of carbonate contributes Ca to the
melt for diopside crystallization at the outer rims and the exsolved
CO2 explains the voids or the ‘‘Ocelli’’, and hence also the ascent
and explosive nature of the volcanism (e.g., pyroclastic).

In conclusion, we suggest that the West Qinling carbonatite and
kamafugite must have shared a common parental magma, a CO2 -
rich silicate magma characterized by high CaO, low SiO2, and highly
enriched incompatible elements. The process of immiscibility oc-
curred during magma ascent from depth as a result of decrease sol-
ubility of CO2 in the host melt, thus an originally one single
compositionally uniform melt segregated into two different melts,
kamafugite melt and carbonate melt. Our observations and interpre-
tation for the West Qinling carbonate–kamafugite association may
have general significance for worldwide kamafugite petrogenesis
(see below), but further effort is needed to verify this hypothesis.

6.3. The nature of the sources

Kamafugite is one of the most enriched (in incompatible ele-
ments) rock types in nature. The highly elevated abundances of
incompatible elements and strongly fractionated LREE/HREE pat-
terns of all these kamafugite samples worldwide (Fig. 10a and b)
are consistent with being their derivation from highly enriched
sources that may have had been previously enriched or refertilized
by low-degree melt metasomatism (O’Reilly et al., 1991; Niu and
O’Hara, 2003; Pilet et al., 2008). Furthermore, the elevated [La/
Yb]N ratios and especially the high [Sm/Yb]N are consistent with
the presence of garnet as a residual phase in the melting region.
The latter is supported by the garnet lherzolite xenoliths (there
are also xenoliths of pyroxenite, dunite, harzburgite, etc.) from
the West Qinling kamafugite suite (Yu et al., 2001b; Su et al.,
2009, 2010, 2011).

The West Qinling kamafugites display the low 87Sr/86Sr and
high 143Nd/144Nd (Figs. 7 and 11), which is consistent with (1) their
being mantle origin and (2) the more recent metasomatism (recent
enough for highly elevated abundances of incompatible elements
without enough time for isotopic ingrowths). Yu et al. (2001b,
2004) suggested that the lithosphere thickness in West Qinling is
80–120 km, and the depth of magma produced is �92 km. It is pos-
sible that the West Qinling kamafugitic magmas or their parental
magmas (prior to carbonatite melt segregation) may have origi-
nated at the base of the lithosphere or lithosphere-asthenosphere
boundary zone (LAB). This LAB may be associated with a layer of
melt enriched in volatiles (CO2 + H2O), alkalis and incompatible
elements (Niu, 2008; Niu and O’Hara, 2009; Humphreys and Niu,
2009). This inference is also supported by experimental (Pilet
et al., 2008) and modeling (Pilet et al., 2011) studies that melting
of metasomatic veins at the base or deep part of the metasoma-
tized lithosphere will produce melts with elemental compositions
matching those of extreme alkaline lavas.

Note that the Italy kamafugite suite is characterized by the
‘‘crustal signature’’ (or ‘‘arc signature’’), i.e. relative depletion in
high field strength elements (HFSEs: Nb, Ta, Ti), a negative Eu
anomaly (Fig. 10a and b) and high Sr and low Nd isotopic ratios
(Fig. 11). However, the very high Mg# (�0.73, N = 12) and low
SiO2 (<45 wt.%) and highly enriched incompatible elements are nei-
ther consistent with island arc petrogenesis nor with continental
crust assimilation. With all the conceivable possibilities considered,
we propose that (1) the Italian kamafugite suite, as all other suites,
results from melting of metasomatized mantle lithosphere as we
argue above; (2) the metasomatic agent may be low-degree melts
genetically associated with ancient subducted seafloor carbonate
with terrigenous sediments incorporated in the lithosphere; (3)
the amount of the terrigenous sediments involved determines the
composition of the metasomatic agent, hence the metasomatized
lithosphere source for the kamafugite. These will effectively explain
all the kamafugite characteristics as summarized below (Fig. 11).

We consider that all the kamafugite suites may have been
formed the same way through low-degree melting of metasoma-
tized mantle lithosphere. However, the prior metasomatism and
metasomatic agent may differ. With all the elemental characteris-
tics and Sr–Nd isotopes considered, we propose that the metaso-
matic agent must have been carbonatitic in nature, and may
have ultimately originated from subducted seafloor carbonate as
part of the terrigenous sediment package with the continental
crustal signature. The varying contribution of the terrigenous sed-
iments as the ultimate origin of the metasomatic agent in the con-
tinental mantle lithosphere is best illustrated by the mixing curve
in Fig. 11. Of the four kamafugite suites, the Italian suite, for exam-
ple, must have the highest amount of subducted terrigenous sedi-
ments in the source (or the metasomatic agent derived from them)
as characterized by the ‘‘crustal signature’’ (i.e., Nb, Ta and Ti
depletion) with high Sr and low Nd isotopes, while the West Qin-
ling suite has involved least amount of the terrigenous sediments.

Our new perspective may be over simplistic, but at least it
works for the whole four suites together in combination of the
trace element characteristics (Fig. 10a and b) and isotopes
(Fig. 11). While the West Qinling and the world type suites of car-
bonatitic-kamafugitic association are all different to some extent,
the fact that our simple hypothesis can effectively explain all these
different suites means that this is a good hypothesis that can be
further tested and quantified.

7. Conclusions

(1) The West Qinling kamafugite shares similar geochemical
properties with type kamafugite suites worldwide (e.g.,
those from Uganda, Brazil and Italy) in having low SiO2, high
CaO and elevated abundances of incompatible elements.

(2) The association of all these kamafugite suites with carbona-
tite points to a genetic link between these two lithologies.
This link is particularly convincing for the case of the
West Qinling kamafugite suite in terms of stratigraphic
associations, outcrop/hand-specimen characteristics and
petrography.

(3) The kamafugite and carbonatite are two ‘‘immiscible’’ melts
segregated from a common CO2-rich silicate parental
magma by means of immiscibility during ascent.

(4) The ultimate sources of the primary magmas are likely
metasomatized mantle lithosphere with the metasomatic
agent being carbonatitic melt. The metasomatic agents
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may have derived from subducted seafloor carbonate rocks
along with terrigenous sediments. The West Qinling suite,
for example, has involved least amount of the terrigenous
sediments while the Italian suite must have involved the
largest amount of terrigenous sediments in their respective
histories of the lithospheric mantle development.

(5) Our hypothesis on the petrogenesis of kamafugite is simple,
but effective to explain all those suites from different conti-
nents. Further effort should aim to test and quantify the
hypothesis.
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