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a b s t r a c t

A Paleozoic ultrahigh-pressure metamorphic (UHPM) belt extends along the northern margin of the
Qaidam Basin, North Tibetan Plateau. Eclogites in the Yuka eclogite terrane, northwest part of this UHPM
belt, occur as blocks or layers of varying size intercalated with granitic and pelitic gneisses. These eclogites
have protoliths geochemically similar to enriched-type mid-ocean ridge basalts (E-MORB) and oceanic
island basalts (OIB). On the basis of Ti/Y ratios, they can be divided into low-Ti and high-Ti groups. The low-
Ti group (LTG) eclogites exhibit relatively low TiO2 (most <2.5 wt%) and Ti/Y (<500) but comparatively high
Mg# (48–55), whereas the high-Ti group (HTG) eclogites have high TiO2 (most >2.5 wt%) and Ti/Y (>500)
but lower Mg# (46–52). Zircons from two eclogite samples gave a magmatic crystallization (protolith)
ircon U–Pb age
50 Ma mantle plume
orth Qaidam UHP belt
ontinental subduction

age of ∼850 Ma and a UHPM age of ∼433 Ma. The occurrence, geochemical features and age data of the
Yuka eclogites suggest that their protoliths are segments of continental flood basalts (CFBs) with a mantle
plume origin, similar to most typical CFBs. Our observation, together with the tectonic history and regional
geologic context, lend support for the large scale onset of mantle plume within the Rodinia supercontinent
at ∼850 Ma. The Qaidam block is probably one of the fragments of the Rodinia supercontinent with a
volcanic-rifted passive margin. The latter may have been dragged to mantle depths by its subducting

ic lith
leading edge of the ocean

. Introduction

Continental flood basalts (CFBs) with the geochemistry similar
o that of ocean island basalts (OIB) may be of mantle plume ori-
in, and represent volumetrically significant and rapidly emplaced
elts produced by decompression melting of rising mantle plume

eads (e.g., White and McKenzie, 1989; Richards et al., 1989;
ampbell and Griffiths, 1990; Coffin and Eldholm, 1994; Puffer,
001). The ∼830–750 Ma Neoprotozoic continental intraplate mag-
atism widespread in Australia, Laurentia and South China has

een attributed to a long-lived mantle plume or superplume that
ay have triggered the breakup of the supercontinent Rodinia (e.g.,
eaman et al., 1992; Zhao et al., 1994; Park et al., 1995; Li et al.,
999, 2002, 2003, 2006, 2008a, 2010; Frimmel et al., 2001; Shellnutt

t al., 2004; Wang et al., 2007, 2008).

The onset time of the long-lived Neoproterozoic plume (or
uperplume) activity, however, remains poorly constrained. It is
enerally thought that Rodinia was assembled through worldwide

∗ Corresponding author. Tel.: +86 10 62767729; fax: +86 10 62767729.
E-mail address: sgsong@pku.edu.cn (S. Song).

301-9268/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.precamres.2010.09.008
osphere in the Early Paleozoic.
© 2010 Elsevier B.V. All rights reserved.

orogenic events between 1300 Ma and 900 Ma and started to break
up at ∼825 Ma (e.g., Li et al., 2008a and references therein). Between
the time interval from 900 Mato 830 Ma, little geological record is
available within Rodinia, and only a small number of 870–850 Ma
intrusions such as those in South China, Africa, the Scandinavian
Caledonides and the Scottish promontory of Laurentia have been
reported (Li et al., 2003, 2010; Paulsson and Andreasson, 2002;
Dalziel and Soper, 2001), which were interpreted as representing
the beginning of the break-up of Rodinia. However, this interpre-
tation may be questionable as the petrogenesis of these intrusions
is unclear and could very well record post-orogenic magmatism
associated with the Grenvill orogeny or other intraplate (non-
orogenic) magmatism. Consequently, Li et al. (2008a) concluded
that a widespread plume activity did not occur until ∼825 Ma.

The North Qaidam UHPM belt extends in NW-direction between
the Qaidam block and Qilian block on the northern Tibetan Plateau,
NW China (Fig. 1a). It is a type continental subduction zone with

exhumed rocks dominated by granitic and pelitic gneisses with
lesser amounts of eclogite and garnet peridotite (Yang et al., 1998,
2001, 2002, 2006; Song et al., 2003a,b, 2005, 2006, 2009a,b; Zhang
et al., 2005, 2008b; Mattinson et al., 2006, 2007). Reliable zircon
U–Pb ages indicate that the UHP metamorphism and subsequent

dx.doi.org/10.1016/j.precamres.2010.09.008
http://www.sciencedirect.com/science/journal/03019268
http://www.elsevier.com/locate/precamres
mailto:sgsong@pku.edu.cn
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Fig. 1. (a) Schematic maps showing major tectonic units of China (afte

xhumation occurred from ∼460 Ma to 400 Ma (Song et al., 2003a,
005, 2006; Mattinson et al., 2006, 2009; Zhang et al., 2008b,a;

hen et al., 2009). On the basis of the geochemistry and age data,
ong et al. (2006) demonstrated that this UHP belt had undergone
n evolution history from oceanic subduction at ∼460–440 Ma,
o continental subduction at ∼430–420 Ma, and to exhumation
t ∼400 Ma. Recognition of the UHP metamorphosed ophiolitic
et al., 2006). (b) Geological map of the Yuka eclogite-bearing terrane.

sequences with protolith ages of ∼550–500 Ma in the Dulan ter-
rane at the east end of this UHPM belt (Zhang et al., 2008a, 2009a,b;

Song et al., 2009b) supports the above interpretations.

In this paper, we present elemental and Nd isotopic data and
SIMS zircon U–Pb ages for the Yuka eclogites hosted in the granitic
and pelitic gneisses in the northwest part of the UHPM belt. We
show that the protoliths of the Yuka eclogite blocks have geo-
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hemical characteristics resembling those of OIB or CFB with a
agmatic age of ∼850 Ma. We interpret the protoliths, along with

ther geological observations, as representing fragments of a suite
f continental flood basalts, whose geochemistry and magmatic
ge of ∼850 Ma favors a mantle plume origin with the supposed
lume head probably underlain Rodinia in the Neoproterozoic time.
he Yuka eclogite protoliths were probably emplaced at a volcanic-
ifted passive continental margin associated with the break-up of
odinia.

. Geological settings

The North Qaidam UHPM belt is located at the northern mar-
in of the Tibet Plateau. It extends approximately 400 km and is
ffset by the Altyn Tagh Fault, a large sinistral strike-slip fault sys-
em in western China (Fig. 1a). To the south is the Qaidam block,
Mesozoic intercontinental basin with a Precambrian basement

hat remains poorly studied. To the north is the Qilian block with
Precambrian basement similar to the Yangtze Craton (Wan et al.,
001; Song et al., 2006; Chen et al., 2009). Further to the north

s the North Qilian Early Paleozoic subduction-zone complexes
ith ophiolite, lawsonite-bearing eclogite and carpholite-bearing
etapelite, which is interpreted to be the suture zone between

he North and South China Cratons (i.e., Song et al., 2009a and
eferences therein).

The North Qaidam UHPM belt consists mainly of a typical
ontinental-type subduction zone rock assemblage of granitic and
elitic gneisses intercalated with blocks of eclogite and ultra-
afic rocks. From northwest to southeast, there are three discrete

erranes along the UHPM belt, i.e., the Yuka-Luliangshan, the
itieshan and Dulan terranes. The presence of coesite and dia-
ond inclusions in zircons and garnets suggests UHPM conditions,

imilar to continental-type UHPM terranes elsewhere in the world
Yang et al., 2001, 2002; Song et al., 2003a, 2005). In the Dulan
HPM terrane, UHP metamorphosed ophiolite sequences, includ-

ng serpentinized harzburgite, banded ultramafic to mafic cumulate
kyanite–eclogite) and massive eclogite with N- to E-MORB affini-
ies, suggest a former oceanic subduction prior to the continental
ubduction (Song et al., 2003b, 2009b; Zhang et al., 2008a). The
ge data indicate that the ophiolite was formed at ∼500–550 Ma
nd metamorphosed at HP–UHP conditions at ∼460–420 Ma. The
arnet peridotite in the Luliangshan region (see Fig. 1b for its local-
ty), which is interpreted as layered ultramafic complex, has been
ubducted to depths greater than 200 km (Song et al., 2004, 2005,
007). The eclogite in the Yuka terrane was first reported by Yang
t al. (1998) and further studied by Zhang et al. (2005) and Chen
t al. (2009). Recently, Zhang et al. (2009a,b) reported UHP miner-
ls (e.g., coesite) from the Yuka eclogite, which is consistent with
he calculated metamorphic P–T conditions of P = 2.8–3.2 GPa and
= 650–700 ◦C. In situ LA-ICPMS zircon U–Th–Pb dating yielded
etamorphic ages of 431 ± 4 to 436 ± 3 for eclogite and 431 ± 3

o 432 ± 19 Ma for the hosting gneisses (Chen et al., 2009). Inher-
ted cores in zircons give ages of ∼750–800 Ma (Zhang et al., 2008b;
hen et al., 2009).

. Field occurrence and petrography

.1. Gneisses

There are two types of felsic gneisses, pelitic paragneiss

PG) and granitic orthogneiss (GG). The former (PG) is volu-

etrically minor, and is mostly interbedded with the eclogites
Fig. 2a and b). It contains a metamorphic assemblage of
arnet + muscovite + quartz + plagioclase ± kyanite ± allanite with
arying modal contents between samples. The granitic orthogneiss
arch 183 (2010) 805–816 807

occupies ∼70 vol.% of the Yuka eclogite–gneiss terrane. The granitic
gneisses are white to pale grey and show medium- to coarse-
grained granoblastic texture with strong foliation. They consist
of K-feldspar, plagioclase, quartz, muscovite, and tourmaline with
garnet in some samples. Zircon U–Pb dating give ∼950 Ma (Lu,
2002; Chen et al., 2009).

3.2. Eclogite

Eclogites occur as lens-like blocks of varying size, layers and
boudinaged dykes within both granitic and pelitic gneisses (Fig. 2).
Some eclogite layers extend for more than 1 km in length (Fig. 2b).
Most eclogites are fresh, show a medium- to coarse-grained gran-
ular texture and have a typical mineral assemblage of garnet,
omphacite, rutile and phengite (Fig. 3a–c) with subsequent amphi-
bole overprinting. Zircons are seen as euhedral crystals in the
matrix (Fig. 3d) and as small (<50 �m) rounded inclusions in garnet.

4. Analytical methods and data

All the samples are fresh cuttings away from late veinlets (meta-
morphic or magmatic impregnation, etc.) with pen marks, saw
marks, sticker residues, and other suspicious surface contami-
nants ground off before thorough cleaning. The samples were then
reduced to 1–2 cm size chips using a percussion mill with mini-
mal powder production. These rock pieces were then ultrasonically
cleaned in Milli-Q water, dried, and powdered in a thoroughly
cleaned agate mill in the clean laboratory at the Langfang Regional
Geological Survey, China.

Bulk-rock major element oxides (SiO2, TiO2, Al2O3, FeO, MnO,
MgO, CaO, Na2O, K2O, and P2O5) were analyzed using a Leeman
Prodigy inductively coupled plasma-optical emission spectroscopy
(ICP-OES) system with high dispersion Echelle optics at China
University of Geosciences, Beijing (CUGB; Table 1, Supplemen-
tary data). Precisions (1�) for most elements based on rock
standards BCR-1, AGV-2 (US Geological Survey (USGS)) and GSR-3
(national geological standard reference materials (SRM) of China)
are better than 1% with the exception of TiO2 (∼1.5%) and P2O5
(∼2.0%). Loss on ignition (LOI) was determined by placing 1 g of
samples in the furnace at 1000 ◦C for several hours before being
cooled in a desiccator and reweighed.

Whole-rock trace element analyses for the Yuka eclogites
(Table 1, Supplementary data) were performed on an Agilent-7500a
inductively coupled plasma mass spectrometry (ICP-MS) at CUGB.
Fifty mg powder of each sample was dissolved in equal mixture of
subboiling distilled HF and HNO3 with a Teflon digesting vessel on
a hot-plate for 24 h using high-pressure bombs to ensure complete
digestion/dissolution. This procedure was repeated using smaller
amounts of acids for a further 12 h. After digestion, the sample
was evaporated to incipient dryness, refluxed with 6 N HNO3, and
heated again to incipient dryness. The sample was then dissolved in
2 ml of 3 N HNO3 and diluted with Milli-Q water (18 M�) to a final
dilution factor of 2000. Two USGS rock reference materials BCR-1
and BHVO-1 were used to monitor the analytical accuracy and pre-
cision. Analytical accuracy, as indicated by relative difference (RE)
between measured and recommended values is better than 5% for
most elements, ranging between 10% and 13% for Cu, Sc, Nb, Er, Th,
and U, and between 10% and 15% for Ta, Tm, and Gd.

Sm–Nd isotopic compositions of representative samples
(Table 2, Supplementary data) were determined using a Micromass

Isoprobe multi-collector ICP-MS (MC-ICP-MS) in the Guangzhou
Institute of Geochemistry following Li et al. (2004). Measured
143Nd/144Nd ratios were normalized to 146Nd/144Nd = 0.7219,
and the reported 143Nd/144Nd ratios were further adjusted
relative to the Shin Etsu JNdi-1 standard of 0.512115. Initial



808 S. Song et al. / Precambrian Research 183 (2010) 805–816

Fig. 2. Photographs showing occurrence of the Yuka eclogite blocks. (a) Eclogite layers interbedded with paragneisses. (b) Thick eclogite layers that extend about 1 km; some
are retrograde into garnet-amphibolite. (c) Eclogite layer covering the granitic gneiss. (d) Dyke-like eclogite blocks within the granitic gneiss. (e) and (f) Lentoid eclogite
blocks within the pelitic gneiss.
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ig. 3. Photomicrographs showing texture and mineral assemblage of the Yuka ec
Rt) of the HTG eclogite (2C87). (b) Rutile aggregate in the HTG eclogites (2C87). (c)
2C87).

43Nd/144Nd ratios and corresponding εNd(t) values were calcu-
ated on the basis of present-day reference values for chondritic
niform reservoir (CHUR): (143Nd/144Nd)CHUR = 0.512638 and

147Sm/144Nd)CHUR = 0.1967.
Two eclogite samples (2C87 and 4Y04) from the Yuka terrane

ere chosen for zircon U–Pb geochronological study. They were
rushed and sieved to <300 �m. Zircon grains were separated using
tandard density and magnetic separation techniques, and finally
and-picked under a binocular microscope. They were then embed-
ed in 25 mm epoxy discs and polished down to half-sections. The

nternal structure of zircon grains was examined using a cathodo-
uminescent (CL) spectrometer (Garton Mono CL3+) equipped on a
uanta 200F ESEM with 45-s scanning time at conditions of 15 kV
nd 120 nA at Peking University.

Measurements of U, Th and Pb were conducted using SHRIMP
I at Australian National University (ANU) (sample 4Y04) and the
ameca IMS-1280 ion microprobe at the Institute of Geology and
eophysics, Chinese Academy of Sciences in Beijing (sample 2C87).
nalytical procedures of SHRIMP II have been described in Rubatto
t al. (1998). Data given in Supplementary data Table 3 have 1�
rrors. Operation conditions and data reduction procedures for

ameca IMS-1280 analyses have been described in Li et al. (2009).
–Th–Pb ratios and absolute abundances were determined relative

o the zircon standard 91500 (Wiedenbeck et al., 1995), which was
nalyzed repeatedly between samples. The mass resolution used
o measure Pb/Pb and Pb/U isotopic ratios was 5400 during the
. (a) Mineral assemblage garnet (Grt), omphacite (Omp), phengite (Phn) and rutile
al Grt and Omp in the LTG eclogite (2C125). (d) Euhedral zircon in the HTG eclogite

analysis. Measured compositions were corrected for common Pb
using non-radiogenic 204Pb. Corrections are sufficiently small and
are insensitive to the choice of common Pb composition. An aver-
age of present-day crustal composition (Stacey and Kramers, 1975)
is used for the common Pb assuming that the common Pb is largely
from surface contamination introduced during sample preparation.
The data are summarized in Supplementary data Table 4. Uncer-
tainties on individual analyses are reported using 1� errors, and
weighted mean ages for pooled 206Pb/238U results are quoted at a
95% confidence level.

5. Data interpretation

5.1. Classification of protoliths of the Yuka eclogite

We use Ti/Y ratio to finger-print the protoliths of the eclogites
because this ratio is generally less sensitive to fractional crystal-
lization of basaltic magmas (e.g., Peate et al., 1992; Xu et al., 2001)
and because both Ti and Y are relatively immobile during meta-
morphism. The 18 analyzed samples can be divided into two major
groups: high-Ti group (HTG, Ti/Y > 500) and low-Ti group (LTG,

Ti/Y < 500). Fig. 4 shows that the Ti/Y ratios of the Yuka eclogites
are correlated with Mg# (indicator of differentiation) and Sm/Yb
(degree of HREE fractionation, reflecting the effect of source vari-
ation or varying contributions of melt from the garnet peridotite
facies). In general, the LTG samples have higher Mg# and lower
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ig. 4. Diagram showing variation of Mg# and Sm/Yb against Ti/Y for the Yuka
clogites.

m/Yb ratio compared to most HTG samples. In Nb/Y vs. Zr/Ti
iagram (Winchester and Floyd, 1977), all HTG samples plot in
he alkaline basalt field, whereas the LTG samples are in the sub-
lkaline basalt field (Fig. 5).

.2. Whole-rock major elements

All Yuka eclogite samples display a relative narrow com-
ositional variation in SiO2 (43.33–49.47 wt%), total Fe2O3
Fe2O3t, 12.56–16.34 wt%), MgO (5.3–7.3 wt%) and Mg-number
Mg# = 0.55–0.46), but a wide range in K2O + Na2O (2.64–4.83 wt%)
nd TiO2 (1.38–4.04 wt%). Both alkali and TiO2 show negative cor-
elations with SiO2. The low-Ti group exhibits low Ti/Y (<500) with
iO2 <2.5 wt% in most samples (only one sample is 2.6), and the
igh-Ti group samples (Ti/Y > 500) have high TiO2 (most >2.5 wt%
xcept sample 4Y27).
.3. Trace elements

The HTG and LTG eclogite samples are distinct in terms of
inor and trace element compositions. As expected, the HTG

amples have higher HFSE (high-field strength elements) than
Fig. 5. Classification using Nb/Y vs Zr/Ti diagram for the Yuka eclogites.

the LTG. On chondrite-normalized REE and primitive-mantle nor-
malized trace element diagrams (Fig. 6), the HTG samples have
higher abundances of REEs (�REE = 122–199 ppm) and greater
light REE enrichment ([La/Yb]N = 5.22–17.23) than the LTG samples
(�REE = 48–106 ppm; [La/Yb]N = 1.56–2.95). Also, the LTG samples
show a large variation in Rb and Ba, and are strongly depleted
related to Th in some samples. All LTG samples have a positive U
anomaly. Sr is also variable in the LTG samples with both posi-
tive and negative anomalies. On the other hand, most HTG samples
show smooth or a negative Sr anomaly related to Pr and Nd (except
4Y27). In general, except for variable LILEs (e.g., Rb, Ba, U and
Sr) which could be caused by their mobility during seafloor or
subduction-zone metamorphism, the HTG samples show “immo-
bile” trace elements characteristics resembling the present-day
ocean island basalts (OIB), whereas the LTG samples resemble the
present-day enriched type mid-ocean ridge basalts (E-MORB) or
transitional type.

5.4. Nd-isotope

Nd isotopic data are given in Supplementary data Table 2. The
initial isotopic ratios were corrected to 847 Ma (see below). The
Yuka eclogites display a wide range of 143Nd/144Nd values from
0.512160 to 0.512699 with εNd(t = 847 Ma) varying from +5.07 to
−7.96, more enriched than MORB and most OIB.

5.5. Zircon U–Pb ages

Two samples (2C87 and 4Y04) used for zircon U–Pb dating
are fresh eclogites with mineral assemblage of garnet, omphacite
(Jd30–35), phengite (Si = 3.35–3.4 p.f.u.), rutile, minor amphibole,
apatite and zircon (Fig. 3). About 300 zircon grains were recov-
ered from each sample of ∼5 kg in weight. As shown in Fig. 7,
these zircon grains are colorless, irregular crystals with long axes
varying from 50 �m to 150 �m and length/width ratios from 1.2
to 2.5. CL images show all zircon crystals from the two samples
have dark luminescent cores and narrow, bright luminescent rims
(Fig. 7c–f). Omphacite and garnet inclusions have been detected in

the rim domains by electron probe microanalysis. Dark lumines-
cent cores from sample 4Y04 are unzoned or weakly zoned (Fig. 7a
and b), suggesting strong metamictization. The major domains of
dark luminescent cores from sample 2C87 display straight and wide
oscillatory growth bands (Fig. 7c and d), which, together with the
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rregular crystal shape, are interpreted as typical features for zir-
ons from mafic volcanic rocks.

The uranium content in zircons from sample 4Y04 varies
n a large range from 184 to 2709 ppm and Th from 153 to
447 ppm with Th/U ratios of 0.37–4.28. Analyses of 17 zircon
rains yield 206Pb/238U apparent ages ranging from 439 to 867 Ma
nd 206Pb/207Pb ages from 456 to 848 Ma. However, the metamor-
hic rims are so thin (<20 �m) that analyses of 18 zircon grains are
ostly discordant, and define a mixing line with an upper-intercept

ge of 847 ± 44 Ma and a lower-intercept age of 433 ± 20 Ma
MSWD = 0.82) in the U–Pb concordia diagram (Fig. 8a).

Twenty-one analyses of 21 zircon cores were obtained for sam-
le 2C87. Uranium content varies from 83 to 650 ppm with Th/U
atios of 0.65–1.49. The apparent 206Pb/207Pb ages of the 21 zircon
rains range from 804 ± 19 to 882 ± 22 Ma, which are indistin-
uishable within error, and yield a weighted mean of 847 ± 10 Ma
MSWD = 1.2) (Fig. 8b). In the Tera-Wasserburg Concordia dia-
rams, an upper intercept age of 848 ± 15 Ma (MSWD = 0.56) was
lso obtained (Fig. 8b). No metamorphic rims are large enough for
nalysis.

. Discussion

.1. Tectono-petrogenesis of the eclogite protoliths

In the Dulan UHPM terrane, the ophiolitic protoliths (e.g., mantle
arzburgite, ultramafic to mafic cumulate, and basaltic rocks) (Song
t al., 2003b, 2006; Zhang et al., 2008a,b) give formation ages of
00–550 Ma and HP–UHP metamorphic ages of 460–420 Ma. This
oints to a tectonic evolution from oceanic lithosphere subduction,
o continental collision, to continental lithosphere underthrusting
nd to the ultimate exhumation (Song et al., 2006, 2009b).
The protoliths of the eclogites from the Yuka terrane, on the
ther hand, differ significantly from the Dulan ophiolitic sequence.
heir occurrence as layers intercalated with terrigenous sedimen-
ary rocks and as dyke-like bodies within the granitic gneisses
uggests that the protoliths of these eclogites must be basalts from
gites (normalized data from Sun and McDonough (1989).

a continental setting. The high abundances of HFSE and higher
Zr/Y and La/Yb ratios are consistent with this interpretation and
with their protolith basalts being derived from an enriched mantle
source. In primitive mantle normalized trace element diagram
(Fig. 6), the high-Ti and low-Ti groups resemble the present-day
OIB and E-type MORB, respectively, suggesting the possibility of
their mantle plume origin. In the traditional discriminate diagrams
(Fig. 9), such as Zr vs. Zr/Y (Pearce and Norry, 1979), Ti vs. V
(Shervais, 1982) and Nb–Zr–Y (Meschede, 1986), the LTG eclogites
plot in the field transitional between within plate basalts (WPB)
and mid-ocean ridge basalts (MORB), but all HTG eclogites plot
in the field of WPB. In the La–Y–Nb diagram (Cabanis and Lecolle,
1989) (Fig. 9d), all LTG eclogites plot around the boundary between
E-type MORB and continental basalts, and most HTG eclogites fall
in the joint regions of continental basalts and alkali basalts from
continental rift settings. These geochemical features, together
with their host of granitic and pelitic gneisses, suggest that the
protoliths of the Yuka eclogite must be basalts from a continental
setting, perhaps, genetically associated with a mantle plume in the
continental rift stage.

Trace elements in basalts carry the information on their extrac-
tion depths or the lithosphere thickness or the amount of extension
(McKenzie and O’Nions, 1991; Humphreys and Niu, 2009). The
Ce/Yb ratios for LTG eclogites (Ce/Yb = 1.01–9.49) and HTG eclogites
(Ce/Yb = 16.34–47.36) suggest that the protoliths of the LTG eclog-
ites may have resulted from melting at a relatively shallow mantle,
whereas the protoliths of the HTG eclogites may have derived from
melting at a greater mantle depth. This interpretation is consistent
with the systematics in Sm/Yb vs. La/Sm plots (Fig. 10), where the
HTG protoliths may have a higher proportion of melt produced in
the garnet peridotite facies than the LTG protoliths (Humphreys
and Niu, 2009).
As discussed above, geochemical features of the Yuka eclogites
are best interpreted as a result of mantle plume origin, similar to
most continental flood basalts (CFBs) such as the Emeishan CFB in
Southwest China (Xu et al., 2001; Xiao et al., 2004), Ethiopian CFB
(Pik et al., 1999), northern Karoo CFB (Sweeney et al., 1994), and are
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re unzoned and strongly metamictized. (c and d) Irregular zircon crystals showin
nlarged images of zircon crystals in (d).
onsistent with plume-derived flood basalts as defined by Puffer
2001). For all these reasons, we propose that the protoliths of the
uka eclogites are continental flood basalts, genetically associated
ith a mantle plume activity in its early continental rift stage at
850 Ma.
ark luminescent cores with bright luminescent rims from sample 4Y04; the cores
ight and wide oscillatory growth bands with narrow bright rims (2C87). (e and d)
6.2. Metamorphic and protolith ages of the Yuka eclogites

While it is clear that the Yuka eclogites were formed in response
to a continental subduction event in the Early Paleozoic (e.g., Song
et al., 2006, 2009b; Mattinson et al., 2007), the exact timing of
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ig. 8. Tera-Wasserburg (TW) diagrams for zircons from: (a) sample 4Y04 and (b
07Pb/206Pb at the 95% confidence level.

his metamorphism has been ambiguous because of analytical
ifficulties. Using TIMS single zircon U–Pb method, Zhang et al.
2005) suggested the eclogite-facies metamorphism took place at
500 Ma, but this is likely a “mixing” age because most zircons from

he Yuka eclogites have inherited old magmatic cores (vs. meta-
orphic mantles and rims). Zircons from a metapelite sample yield

etrital 207Pb/206Pb ages ranging from 950 to 2216 Ma (Song et al.,
006), and the metamorphic rims are too thin to be analyzed by
HRIMP. Recently, Chen et al. (2009) have obtained eclogite-facies
etamorphic (zircon rim) ages of 431 ± 4 Ma and 436 ± 3 Ma for

wo eclogite samples and of 431 ± 3 Ma and 432 ± 19 Ma for two
etapelite samples. They have also given approximate protolith
zircon core) ages of >750 Ma for the eclogite samples.
Zircons in our two eclogite samples show characteristics that are

imilar to zircons from mafic volcanic rocks. The uniform CL images
nd U–Pb ages (2C87) suggest that zircons were crystallized from
he melt other than crustal assimilation/contamination. In spite of
ple 2C87. All plotted data are corrected using 204Pb and the mean age of 2C87 is

eclogite metamorphism, their metamorphic rims are too thin to
be properly analyzed. The upper intercept ages of 848 ± 15 Ma (for
both samples) and 207Pb/206Pb mean age of 847 ± 10 Ma should rep-
resent the protolith age of the Yuka eclogite and are therefore the
formation age of the continental flood basalts as we interpret. Given
the fact that only limited samples can give reliable HP metamorphic
age in the Yuka eclogite and metapelite samples, we reason that the
limited metamorphic growth (thin rims) of zircons suggests a rel-
atively dry condition that disfavors fluid-facilitated diffusion and
zircon growth during continental subduction.

6.3. Tectonic implications
The Neoproterozoic (∼830–720 Ma) continental intraplate mag-
matism is widespread on several continents including Australia,
Laurentia, South China, South Korea, India, Seychelles and Tarim.
This global intraplate magmatism has commonly been attributed to
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Fig. 9. Discrimination diagrams for the Yuka eclogites: (a) Zr vs. Zr/Y diagram after Pearce
after Meschede (1986); (d) La–Y–Nb diagram after Cabanis and Lecolle (1989).

Fig. 10. Sm/Yb vs. La/Sm diagram for the Yuka eclogites. Batch melting trends for
garnet and spinel peridotite are after Lassiter and DePaolo (1997). Arrows denote the
effect of decreasing melt fraction (F). This plot shows that LTG eclogites underwent
higher degree partial melting than that of HTG eclogites. Extremely high La/Sm and
Sm/Yb ratios of HTG eclogites suggest that protoliths of HTG eclogites originated
from garnet-bearing mantle source, and experienced lower degree partial melting
than protoliths of the LTG eclogites.
and Norry (1979); (b) Ti vs. V diagram after Shervais (1982); (c) Nb–Zr–Y diagram

mantle plumes or a superplume that caused breakup and fragmen-
tation of the supercontinent Rodinia (e.g., Heaman et al., 1992; Zhao
et al., 1994; Park et al., 1995; Li et al., 1999, 2003, 2006, 2008a,b;
Frimmel et al., 2001; Shellnutt et al., 2004). These Neoprotero-
zoic plume-related igneous rocks include the 850–820 Ma mafic
to ultramfic dykes and the 830–740 Ma granite–diabase complex
and bimodal (basalt-rhyolite) volcanic rocks in south China (e.g.,
Li et al., 2003, 2008a,b and references therein). The 825 Ma Yiyang
komatiitic basalts in the south China were thought to be gener-
ated by melting of an anomalously hot mantle source (T > 1500 ◦C)
(Wang et al., 2007). The 830 Ma Jinchuan ultramafic intrusions with
Cu–Ni ore deposits and dolerite dykes in northwestern China have
also been thought to be of plume origin (Li et al., 2005).

Generally, initial activity of a mantle plume can produce a large
quantity of basaltic magmas and forms CFBs or basaltic plateaus.
Most researchers suggested that the mantle plume activity that
initiated rifting of Rodinia started at ∼820 Ma or earlier (e.g., Li
et al., 1999). The “global” scale onset of the Neoproterozoic man-
tle superplume, however, is a matter of debate. This is because
most CFBs must have been eroded or destructed during the long
history of weathering and fragmentation of the supercontinent.
The ∼850 Ma Shenwu dolerite dykes reported by Li et al. (2008b)

are the earliest intraplate basaltic rocks that may be related to
the Rodinia breakup. Zircons from the 825-Ma Yiyang komatiitic
basalts also have an age group of 862 ± 6 Ma (Wang et al., 2007),
although this age was interpreted as xenocryst zircon age of the
magma.
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The occurrence and geochemical features of our Yuka eclogite
amples suggest that their protoliths are probably of mantle plume
rigin, similar to most CFBs. The ∼850 Ma zircon U–Pb ages may
ndeed manifest the onset time of large scale plume-related mag-

atic activities within Rodinia. Therefore, tectonic implications of
ur new results may be summarized as follows:

1) The inferred mantle plume that broke up the Rodinia super-
continent may have indeed initiated at ∼850 Ma, earlier than
825–830 Ma.

2) The Qilian-Qaidam blocks represent a composite fragment of
Rodinia that has the affinity with the Yangtze craton in the
present-day South China.

3) The evolution history from the breakup (continental rift) to
reconstruction (continental subduction and collision) of the
supercontinent appears to take a long period of time, ∼400
Myrs.
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