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Abstract

In t his paper the authors sum marize t he result s of their t race element  st udy of lavas from 50 near-ridge seam ount s on
the flanks of the East  P acific Rise (EP R) bet ween 5ûN and 15ûN.  T hese seamount  lavas are dom inated by  deplet ed
N-type m id-ocean  ridge basalts (MORB) with variably enriched E-t ype MORB and some ext rem ely  enriched ones
resembling average com positions of ocean  island basalts (OIB).  T his large composit ional variation reflects wit h great
fidelit y the m ant le source het erogeneity  that  is m asked in  lavas erupt ed at  t he EP R axis.  In  term s of incom patible
trace elem ent  abundances, th is source heterogeneity can  be readily  envisioned as being due t o t he presence of
enriched domains of variable size and unevenly  distribut ed within t he ambient  depleted m antle.  T he geochemical
consequence of m elt ing such a heterogeneous source is to  produce apparent mixing relat ionships in t he lavas.  T he
enriched domains may be dikes or veins resulting from low-degree m elt  m et asom atism .  T he low degree m elts may be
genetically relat ed t o eastward ast henospheric flow of Hawaii p lume m at erials towards t he EPR, as suggested by
mant le t om ographic st udies.  T race element  dat a suggest  t hat t he enriched m at erials (hence Hawaii p lume m at erials)
are ult imately derived from recycled oceanic crust .
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INTRODUCTION

Plate tectonics theory has established that mid-ocean ridges are mostly a passive feature in the
sense that mantle upwelling beneath ridges is  caused by plate separation [1-3].  Mid-ocean
ridge basalts  (MORB), which represent an end product of pressure-release melting of the
upwelling mantle, thus record the geochemical s ignatures of the uppermos t mantle.  In
comparison with basalts  from elsewhere in the oceanic or continental volcanic provinces,
MORB as  a whole show remarkably small geochemical variations  characterized by low
abundances of incompatible elements, low radiogenic Sr and Pb, and high radiogenic Nd [4-
8].  These observations have led to the notion that oceanic upper mantle is  relatively
uniformly depleted in incompatible elements ; it has been des ignated as depleted MORB
mantle (DMM) [5].  Nevertheless , the DMM is  by no means  compos itionally uniform [9],
even from ridges thermally unaffected by any known hotspots such as the East Pacific Rise
(EPR) [10-19].  In fact, s tudies  of near EPR seamounts  revealed small scale yet large 
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Figure  1.  (a) T he general tectonic fram ework of the nort hern East  Pacific Rise and the v icinity.  (b) A simplified
map of t he study  area showing t he locations of the near-ridge seam ounts we studied.
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amplitude compos itional variations  in the sub-EPR mantle [20-24].  In this  paper we extended
these studies  based on our newly available trace element data on lavas  from 50 near-EPR
seamounts between 5ûN to 15ûN on both the Pacific and Cocos plates (Fig. 1).  We first show
that these seamount lavas span extreme compositional variations with extents of depletion and
enrichment surpassing the known range of lavas from the seafloor.  We then discuss the
implications of the data in the context of mantle convection and ocean ridge dynamics.

RES ULTS

Figure 2 shows  chondrite-normalized rare-earth element (REE) abundances of the seamount
lavas.  The average continental crust (CC), ocean island basalts  (OIB), and both enriched E-
type and depleted N-type MORB are plotted for comparison. Clearly, these seamount lavas
display a considerably large range of variations  from extremely light-rare-earth-element
(LREE) depleted samples  to highly LREE-enriched basalts  resembling the average OIB.
Except for the few highly evolved samples (MgO < 6 wt. %; the dashed lines ), the majority of
the samples  define a fairly simple fan-shaped pattern with more depleted samples being more
depleted in the more incompatible elements and the more enriched samples having higher
abundances  of the more incompatible elements.  The depleted samples are more depleted than
samples  from the Lamont Seamount chain near the 10ûN (Fig. 1) [24].  No doubt, such a huge
variation can only be explained by melting a mantle that is  extremely heterogeneous .  Figure 3
plots  [La/Sm]CN, a useful measure of the extent of source depletion or enrichment, as a
function of latitude (top) and longitude (bottom) of sample locations (Fig. 1) to show that
mantle source enrichment/depletion has no geographic systematics.  In fact, both enriched and
depleted samples can be found on the same seamounts.  This indicates that the scale of the 

Fi gu re  2 .  Chondrit e-normalized rare-eart h elem ent abundances of seam ount sam ples.  Also shown are average
compositions of Ocean Island Basalt (OIB), enriched E-MORB, depleted N-M ORB [8], and cont inent al crust (CC)
[63] for comparison.
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Fi gu re  3.  Chondrit e-norm alized [La/Sm]CN ratio of seamount samples are plo tt ed as a funct ion of lat it ude (t op) and
longitude (bott om ) of seamount s st udied.  Clearly, the lack of systematic geographic variat ion, and t he fact that bot h
highly  depleted and enriched lavas can be found wit hin sm all areas or even  single seam ounts, indicates that the scales
of source heterogeneities are quit e small and t hat  their dist ribut ion  is spat ially  not uniform.

heterogeneities may be very small, perhaps  on the order of 100Õs of meters or even smaller.

Figure 4 shows the relative variability [6] of each element for the seamount lavas .  The
decreasing variability is  in fact consistent with decreas ing relative incompatibility (or
increasing bulk distribution coefficient, D) of these elements determined by the s imple
relationship shown in the inset [25].  This indicates that the large compos itional variation in
these lavas as  well as the inferred source variation are the result of  magmatic processes.  The
processes leading to such small scale yet large amplitude variation in the mantle source region
may be examined closely through incompatible element ratio-ratio diagrams such as those in
Figure 5.  These hyperbolic curves are consis tent with a binary mixing [26-27], and are also
qualitatively cons istent with various extents of melting given the relative incompatibility of
these paired elements (Fig. 4).  That is , qualitatively, samples  plotting in the upper left corner
represent the lowest extents of melting whereas samples in the lower right corner represent the
highest extents  of melting in these diagrams .  It is  important to note, however, that melting of
a compositionally uniform source, alone, cannot explain the large amplitude variations.
Further, this  mixing cannot be simple binary mixing of melts  because the lavas are from 50 
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different seamounts of varying ages and it is  difficult to imagine the physical mixing of two
singular melts  over such a wide spatial and temporal interval.  The curved trends in Figure 5
can be readily explained by melting a mantle that is  compositionally heterogeneous via
melting-induced mixing [28].  Enriched materials  have lower melting temperature and thus
tend to enter the melt firs t upon melting [21,29]. With progress ive melting, the amount of the
enriched material in the melt decreases as  a result of dilution.  Therefore, the geochemical
consequence of melting of a heterogeneous mantle source is  to produce the apparent mixing
relationships  seen in Figure 5.  The important message here is  that the apparently complex
source heterogeneity reflected by the seamount lavas is  in fact rather simple and can be
explained by the presence of incompatible element enriched domains of variable size
distributed widely but unevenly in the ambient depleted MORB mantle.

DIS CUS S ION

Why do near-ridge seamount lavas show larger geochemical variations than MORB lavas
from the ridge axis?

The geochemical variations  of northern EPR axial lavas  have been well documented [10-19,
28, 30-32].  These variations  are s ignificantly smaller in amplitude than those seen in the
nearby seamounts (Fig. 2). This  difference can be explained by the action of two well-
documented mixing processes that occur beneath the ridge axis but not under seamounts.
Firs t, MORB from the ridge axis  represents  melting of a large volume in the mantle.  Melt
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Fi gu re  4.  Relative variabilit y of trace element  abundances in  seam ount  lavas plot ted against  their order of
incom patibility det ermined by  the simple relationship in t he inset  [25] t o show the excellen t correspondence between
the variability  and t he incom pat ibilit y of element s. T his indicat es t hat the process leading to  t he observed trace
element variations are partial melting.  
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Figure  5.  Plo ts of various high ly and moderat ely  incompatible element pairs to show that  the seam ount data can be
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migration and focussing towards the very narrow (1-2 km) axial accretion zone [33] are an
important mixing process that homoginizes melts  moving upwards and laterally towards the
axis.  Secondly, additional mixing occurs  in axial magma chambers  that exis t along much of
the EPR axis  [33-35] further homoginizing the melt prior to eruption [20-21, 23, 28, 30, 32].
In contras t, off-axis  s eamounts represent much smaller melt volumes  tapped locally [20-21,
23, 28, 30, 32, 36-37], and lack s teady-s tate magma chambers . Because they are much less
efficiently mixed, seamount lavas reflect with greater fidelity than axial lavas  the actual
mantle source heterogeneity beneath the EPR.

Characteristic of the enriched heterogeneity

The above observations place three limits  on the enriched heterogeneities: (1) the observed
mixing is  a melting-induced mixing, i.e., the enriched heterogeneities  exis t as phys ically
dis tinct domains  in the ambient depleted mantle prior to the major melting events  (Fig. 5); (2)
the sizes of the enriched heterogeneities must be variably small, and their distribution is  not
uniform (Fig. 3); and (3) the enriched heterogeneities mus t be of low-degree melt origin
because the enriched samples have higher abundances of more incompatible elements (Fig. 2)
and the relative abundance variability of trace elements is  proportional to their relative
incompatibility (Fig. 4).  These observations, taken together, suggest that the enriched
heterogeneities  exis t in the immediate source region in the form of small dikes or veins [28,
38-39].  The small s izes of the enriched heterogeneities  are required to explain the coexistence
of both depleted and enriched lavas within geographically small areas (Fig. 3) such as single
seamounts  [20-24, 28, 36-37].  The ques tion yet to be answered is  the origin of the low-degree
melts  that we suggest to occur in the form of dikes or veins.  From trace elements  alone (Figs.
2 and 5), it is  obvious that the enriched component is  broadly similar to the source for OIB,
but the apparent absence of any known hotspots in the northern EPR region requires another
mantle process, in addition to simple passive upwelling, to effectively transport plume
materials  to the sub-ridge mantle beneath the northern EPR.

Where does the plume material come from and why are the enriched heterogeneities beneath
the EPR  of wide but spotty dispersal?

The presence of enriched plume-like material beneath the northern EPR region has been
puzzling because there are no known hotspots in this  broad  EPR region.  However, recent
mantle tomographic studies  [40-41] show that lateral as thenospheric flow of plume materials
towards ocean ridges is  likely to be a wide-spread phenomenon.  Figure 6 shows that indeed
there is  an obvious low-velocity layer at ~ 100 to 250 km depth beneath Hawaii that extends
laterally towards the northern EPR. While the large dis tance (~ 5500 km) between Hawaii and
the northern EPR makes such a link seem doubtful at firs t glance, large scale lateral flow of
asthenosphere (even counter-flow) is  apparently required to explain some geoid anomalies
[41-42].  If the Hawaiian plume is , in fact, the source of the enriched component in the area of
the northern EPR, the great distance of transport helps to explain both the spotty dispersal of
the enriched heterogeneities and the absence of any thermal effects  of the plume, as seen at
ridges located nearer active plumes  [43-47].  W hile large scale melting of plume material may
not take place in the course of lateral asthenospheric flow because of little or limited
decompression, very low-degree melts  of low-melting point components mus t inevitably form
and metasomatize the ambient depleted mantle. We propose that it may be this  process that
explains the enriched component of the seamount lavas.
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The ultimate source of the enriched component or Hawaiian plume material

It is  generally agreed that mantle convection and crustal recycling are the primary mechanisms
for creating enriched heterogeneities [48-52] in the deep mantle that rise as plume sources to
supply OIB.  However the exact location of these OIB reservoirs  remains open to debate [5,
25, 53-57]. A curious question is  whether our data have sufficient resolution to decipher the
ultimate source of the enriched component beneath the northern EPR. A potential clue is
provided by the fact that, for seamounts, we find DNb Å DT h < DT a Å DU (Fig. 4). That is ,
mantle melting beneath seamounts  (and also the EPR) does not fractionate Nb from Th, nor
Ta from U; any Ta and Nb anomalies in lavas  must, therefore, be a source signature inherited
from previous events.  Figure 7 shows that the mantle sources for the seamount lavas possess
excess Ta and Nb.  Despite the scatter, the data define a significant trend with generally more
enriched lavas having higher excess Ta and Nb than depleted lavas.  Several important
implications  of Figure 7 are (1) the missing Nb and Ta in the continental crus t clearly must
reside in the mantle source for oceanic basalts , and there is
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no need to invoke a hidden Nb-Ta rich reservoir deep in the mantle [7,58]; (2) recycled
continental crust material is  unlikely to be significant in the source region of the oceanic
basalts , being too depleted in Nb and Ta; (3) as subduction zone related arc magma genesis  is
the only known process that fractionates Nb from Th, and Ta from U (e.g., see Tonga arc
lavas), it appears clear that subduction-zone processes must also be responsible for the excess
Ta and Nb in the source region of oceanic basalts; and (4) recycled oceanic crust is , therefore,
most likely the ultimate source of Hawaiian plume material (e.g., the Koolau volcanics, which
also possess excess Nb relative to Th [59-60]) as proposed previously [6-7, 61], and hence the
enriched component beneath the northern EPR. Nb and Ta may not partition into aqueous
fluid removed from the down-going slab as effectively as the low field strength elements,
resulting in their relative enrichments  in subducted materials  [7-8, 58, 62].

CONCLUS IONS

Near-EPR seamount lavas are compos itionally quite variable, reflecting with great fidelity of
mantle source heterogeneity that is  not so obvious  in the nearby EPR axial lavas.  This
heterogeneity is  characterized by the presence of incompatible element enriched domains of
variably small s ize non-uniformly distributed within the ambient depleted mantle.  The
enriched domains  most likely exis t as  dikes  or veins  resulting from low-degree melt
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"metasomatism".  These low-degree melts  may have been derived from Hawaiian plume
materials  that flow at the asthenospheric level towards the northern EPR.  The remote distance
between Hawaii and the EPR explains both normal (thermally unaffected) EPR topography
and the wide but spotty dispersal of the enriched heterogeneities present beneath the EPR.
The observation that DNb Å DT h < DT a Å DU and the excess Nb-Ta relative to Th-U in the
seamount lavas suggest that the ultimate source of the enriched material (i.e., the source of
Hawaii plume) is  likely to be recycled oceanic crus t.
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