
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. B$, PAGES 7887-7902, MAY 10, 1993 

Chemical Variation Trends at Fast and Slow Spreading Mid-Ocean Ridges 

YAOI.ING NIU1 AND RODEY BATIZA 

Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu 

We examined an expanded global data set of mid-ocean ridge basalt (MORB) major dement analyses. 
In agreement with previous results, we show that slow spreading ridges tend to have more primitive (high 
Mg/Fe) lavas than fast spreading ridges. Fractionation-corrected values of Na(8 ) and Ca($)/AI(8 ) (indices of 
the extent of melting) and Si(s)/Fe(s ) (an index of the pressure of melting) do not vary systematically with 
spreading rate. Assuming a mantle that is generally homogeneous in major elements, we conclude that 
average manfie temperature in the region of melting below mid-ocean ridges is independent of spreading 
rate. Using data for 32 best sampled ridge segments of variable length, we show that the so-called global 
and local trends of chemical variation (Klein and Langmuir, 1989) are systematically distributed with 
spreading rate. The global trend (positive correlation between extent of melting and melting pressure) 
occurs at fast spreading ridges (> 60 mm/yr), while the local trend (negative correlation between extent of 
melting and melting pressure) occurs at slow spreading ridges (< 50 mm/yr). This distribution is 
independent of geographic length scale. Among the 32 ridge systems we examined, the dopes of the two 
trends on chemical diagrams show some variability, but no regular pauern, such as fanning. The global 
trend is well-explained by differences in average mantle temperature occurring at several length scales 
within mantle rising passively in response to plate separation. We propose that the local trend arises from 
processes occurring in buoyant diapirs undergoing melting and melt-solid reequilibratiou. Several lines of 
geophysical and geological evidence point to the importance of buoyant, three-dimensional manfie 
upwelling beneath slow spreading ridges. Petrologic modeling presented here is consistent with this 
hypothesis, as is the existence of the local trend at seamounts on the flanks of the East Pacific Rise. 

INTRODUC'FION 

Spreading rate is an important variable associated with 
many significant differences along the global mid-ocean ridge 
system. For example, morphologic differences are largely 
controlled by spreading rate [e.g., Macdonald, 1982; 
Franchteau and Ballard, 1983], with slow spreading ridges 
typically having deep axial rift valleys that are much less 
pronounced or are absent at fast spreading rates. Related 
topographic roughness on the flanks of mid-ocean ridges also 
depends on spreading rate [Malinverno and Pockalny, 1990; 
Malinverno, 1991; Hayes and Kane, 1991; Small and Sandwell, 
1989]. Along-axis gravity [Lin et al., 1990; Lin and Phipps 
Morgan, 1992] shows important changes with spreading rate, 
interpreted to reflect fundamental differences in the style of 
mantle upwelling, with dominantly two-dimensional, plate- 
driven upwelling below fast spreading ridges and more three- 
dimensional buoyantly driven, diapiric upwelling beneath slow 
spreading ridges [Parmentier and Phipps Morgan, 1990]. 

In addition to topographic and geophysical differences, 
petrologic differences exist between fast and slow spreading 
ridges [Morel and Hekinian, 1980; Natland, 1980; Flower, 
1980; Batiza, 1991; Sinton and Detrick, 1992] with slow 
spreading ridges typically having more primitive (higher 
Mg/Fe) lavas and fast spreading ridges having more 
fractionareal ones. Relationships between isotopic variability 
and spreading rate [Cohen and O'Nions, 1982; Hamelin and 
All•gre, 1985; Batiza, 1984] are more controversial [Ito et al., 
1987; Holness and Richter, 1989]. 
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In this study, we examine an expanded global data set of 
mid-ocean ridge basalt (MORB) major element analyses. In 
agreement with previous studies, we find that fast spreading 
ridges have, on average, more fractionated, lower Mg/Fe 
MORB lavas than slow spreading ridges. We then use data for 
32 well-sampled portions of the global ridge system to 
evaluate chemical variation trends as a function of plate 
spreading rate. Klein and Langmuir [1987] showed that 
globally, MORB shows an inverse correlation between Fe(8)and 
Na(8 ), where the subscript denotes values corrected for shallow 
fractionation to an MgO content of 8.0 wt %. They interpreted 
this in terms of a polybaric decompression melting model and 
showed that deep (high Fe(8)), extensive (low Na(8)) melting 
would be expected from the pooling of polybaric melts 
produced from a long mantle column with high initial melting 
temperature. In contrast, a short mantle melting colunto with 
low initial melting temperature would be expected to produce 
pooled melts reflecting shallower (low Fe(8)) and less extensive 
(high Na(8)) melting. Regionally averaged MORB analyses 
exhibit a trend of negative correlation between Fe(8 ) and Na(8 ) 
called the global trend by Klein and Langmuir [1989]. 

However, some mid-ocean ridge segments, such as the mid- 
Atlantic ridge at 26øS [Batiza et al., 1988], exhibit an opposite 
trend: Fe(8 ) and Na(8 ) show a positive, not inverse correlation. 
That is, shallow (low Fe(8)), extensive (low Na(8)) melting is on 
a trend with deep (high Fe(8)), less extensive (high Na(8)) 
melting. This trend of chemical variation was termed the local 
trend by Klein and Langmuir [1989]. The global and local 
trends are shown in Figure 1. 

In this study, we find that the so-called global trend is found 
at fast (> 60 mm/yr) spreading ridges and that the so-called 
local trend is found at slow (< 50 mm/yr) spreading ridges. 
Transitional ridges (50 - 60 mm/yr) may exhibit either trend of 
chemical variation. This finding is independent of the ridge 
length and thus, the terms "global" and "local" are not 
particularly apt. Even so, we retain the previous usage of these 
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Fig. 1. The global and local trends of chemical variation [Klein and 
Langmuir, 1989] are shown here on Na(8) and Ca 8 A1 8 versus <.)/ <) 
Si(8)/Fe(8 ). The subscript denotes values of the OXlae corrected for 
shallow fractionation to a MgO content of 8.0 wt % [Klein and 
Langmuir, 1987]. Following Niu and Batiza [1991a], we use both 

and Ca 8 A1 I• as indices of the extent of melting and Si 8 e 8 Na(s) (• () . ()/F () 
as an index of the pressure of melting. Arrows on each diagram point 

RESULTS 

Oxide Trends With Spreading Rate 
Plots of the global MORB data against spreading rate show 

much scatter but statistically significant trends for most of the 
major and minor elements, confirming previous f'mdings that 
lavas from fast spreading ridges are typically more fractionated 
than those erupted at slow spreading ridges. With increasing 
spreading rate, TiO 2, FeO, Na20, and P205 increase, while 
AI20 3, MgO, and CaO decrease. The exceptions are SiO 2 and 
K20. SiO 2 may show no trend because of analytical problems 
discussed by Klein and Langrnuir [1989]. K20, on the other 
hand, shows a significant correlation with spreading rate, but it 
is inconsistent with a fractionation. This is because K is a very 
incompatible element and is very sensitive to mantle source 
heteroheneity; higher K20 contents in MORBs at slow 
spreading rate obviously result from hot spot effect such as at 
the North Atlantic ridge. Table 2 gives the slopes, intercepts, 
and correlation coefficients of these linear trends, and Figure 2 
shows representative examples. When the analyses are 
corrected for shallow fractionation (see notes to Table 2 and 
Niu [1992] for correction procedure), these correlations 
virtually disappear. As shown in Table 2 and Figure 2, after 
correction, the slopes are reduced by at least an order of 
magnitude; plots of chemical variations against spreading rate 
are essentially fiat (with much scatter). 

Assuming a homogeneous mantle source and a column 
melting model similar to that of Klein and Langmuir [1987], we 
next plot indices of the extent of melting and depth of melting 
against spreading rate (Figure 3). Si(8)/Fe(8 ) is a very sensitive 
indicator of the pressure of melting [Niu and Batiza, 1991a] and 

to high pressure and higher extent of melting. The data points are from Na(s)and Ca(s)/AI(8 ) are good indices of the extent of partial 
our new global data set of MORB. The heavy line shows the so-call• 
global trend, and the thin solid lines with arrows show (schematically) 
examples of local trends. 

terms in this paper. We consider several possible origins for 
the local trend and conclude that it is due to fundamental 

differences in the dynamics of mantle upwelling and melt 
segregation beneath slow and fast spreading ridges. 

Ti-IE DATA SEr 

To the data set of Brodholt and Batiza [1989], we have added 
the data of Sinton et al. [1991] for the southern East Pacific 
Rise (EPR), Thompson et al. [1989] and Hekinian et al. [1989] 
for the northern EPR, Klein et al. [1991] and Dosso et al. 
[1988] for the South-East Indian ridge, Humler and Whitechurh 
[1988] for the Central Indian ridge, Michael et al. [1989] for 
the Explorer ridge, and Bougault et al. [1988] for the northern 
Mid-Atlantic Ridge (MAR). We also use the updated version of 
Melson and O'Hearn's [1986] Smithsonian Volcanic Glass 
Project (SIVGP) data base (W. G. Melson and T. O'Hearn, 
personal communication, 1991). We use sample group means 
for our analysis and include both glass and whole rock data. 
Using correction factors of Batiza and Niu [1992], we adjust 
Lamont-Doherty Earth Observatory and University of Hawaii 
glass probe analyses to conform with the Smithsonian 
analyses. Data sources of MORB analyses are given in Table 1. 

Spreading rates are from NUVEL 1 [DeMets et al., 1990] 
except for the Explorer ridge [Botros and Johnson, 1988], Juan 
de Fuca [Wilson, 1988] and Gorda ridge [Davis and Clague, 
1987]. 

melting of pooled column melts [Klein and Langmuir, 1987; 
Niu and Batiza, 1991a]. As shown in Figure 3, plots of these 
quantities against spreading rate exhibit much scarer. There is 
a suggestion that the scatter is more pronounced at slow 
spreading rates. This, as will be discussed later, is associated 
with the so-called local trend at slow spreading ridges. 
Nevertheless, there is no evidence for systematic trends in 
either depth of melting or extent of melting with differences in 
spreading rate. This is an interesting finding because it 
confirms that average mantle temperature, an important control 
on melting below ridges [McKenzie, 1984; Klein and 
Langtnuir, 1987; McKenzie and Bickle, 1988], is variable, but 
essentially independent of spreading rate [Klein and Langmuir, 
1987]. 

Chemical Variation Trends Versus Spreading Rate 
Next, we searched the global data set for spreading-rate 

dependence in MORB chemical variation trends. As shown by 
Klein and Langrnuir [1987], regionally averaged MORB data 
exhibit correlations among axial depth, inferred extent of 
melting and inferred depth of melting. Unaveraged raw data 
exhibit similar trends [Brodholt and Batiza, 1989], such that 

deeper melts (high Fe(8), low Si(8)/Fe(8)) are formed by higher 
extents of melting (low Na(8 ) and high Ca(8)/AI(8)). Similarly, 
shallower melts (low Fe(8), high Si(8)/Fe(8)) are formed by lower 
extents of melting (higher Na(8)). This behavior, observed 
globally, was called the global trend [Klein and Langmuir, 
1989]. The opposite trend, with a positive correlation between 
Fe(8 ) and Na(8 ), was noted by Batiza et al. [ 1988] and Brodholt 
and Batiza [1989] and called the local trend by Klein and 
Langmuir [1989]. Here, we try to determine whether the 
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TABLE 1. Data Set 

Ridge Group Means M•O>Swt % Data Sources 
North EPR 553 531 1,4,6,11,23,24,25,26,30,35,42,43,54,55,56 
South EPR 263 243 1,12,45,51,55 
Gorda 28 28 1,16 
Juan de Fuca 184 181 1,19,31,32 
Explorer 8 7 8 3 1,15,41 
Galapagos 172 130 1,2,13,14,21,22,46,47 
Easter, East Ridge 15 15 1,49 
Easter, West Ridge 4 0 4 0 1,49 
North MAR 712 704 1,7,8,9,29,34,40,43,44,48,50,52 
South MAR 97 89 1,5,17,28,39,56 
Cayman Rise 2 6 2 6 1,5 3 
Carlsberg 10 10 1 
Red Sea 19 18 1 
America-Antarctic 4 6 4 6 1,3 8 
SW Indian 39 39 1,20,36,37 
SE Indian 63 63 1,3,18,33 
Central Indian 3 3 3 3 1,27 
Total 2387 2279 

1, Smithsonian; 2, Anderson et al. [1975]; 3, Anderson et al. [1980]; 4, Batiza and Niu [1992]; 5, Batiza et al. [1988]; 6, Bender et al. 
[1984]; 7, Bougault and Hekinian [1974]; 8, Bougault et al. [1988]; 9, Bryan and Moore [1977]; 10, Bryan [1979]; 11, Byers et al. [1986]; 
12, Campsie et al. [1984]; 13, Christie and Sinton [1986]; 14, Clague et al. [1981]; 15, Cousens et al. [1984]; 16, Davis and Clague 
[1987]; 17, Dickey et al. [1977]; 18, Dosso et al. [1988]; 19, Eaby et al. [1984]; 20, Engel and Fisher [1975]; 21, Fisk et al. [1982]; 22, 
Perfit et al. [1983]; 23, Hawkins and Melchior [1980]; 24, Hekinian and Walker [1987]; 25, Hekinian et al. [1985]; 26, Hekinian et al. 
[1989]; 27, Humler and Whitechurch [1988]; 28, Humphris et al. [1985]; 29, Jakobsson et al. [1978]; 30, Juteau et al. [1980]; 31, Karsten 
[1988]; 32, Karsten et al. [1990]; 33, Klein et al. [1991]; 34, Langmuir et al. [1977]; 35, Langmuir et al. [1986]; 36, Le Roex et al. 
[1982]; 37, Le Roex et al. [1983]; 38, Le Roex et al. [1985]; 39, Le Roex et al. [1987]; 40, Melson and O'Hearn [1986]; 41, Michael et al. 
[1989]; 42, Moore et al. [1977]; 43, Morel [1979]; 44, Neurnanm and Schilling [1984]; 45, Renard et al. [1985]; 46, Schilling et al. 
[1976]; 47, Schilling et al. [1982]; 48, Schilling et al. [1983]; 49, Schilling et al. [1985]; 50, Sigurdsson [1981]; 51, Sinton et al. 
[1991]; 52, Stakes et al. [1984]; 53, Thompson et al. [1980]; 54, Thompson et al. [1989]; 55, Tighe [1988] (EPR synthesis); 56, 
unpublished data of Batiza and Niu. 

TABLE 2. Global Correlations 

Raw Data Corrected for Fractionation* 

Slope Intercept R S lope Intercept R 
SiO 2 7.45x10 '4 50.65 2.63x10 '2 Si(8) -2.18x10 '3 50.52 1.45x10 -1 
TiO2 3.84x10 '3 1.39 3.73x10 '• Ti(8 ) 6.96x10 -4 1.31 1.42x10 -• 
A1203 -7.14x10 '3 15.30 3.12x10 -• AI(8 ) -2.60x10 -3 15.63 1.87x10 '• 
FeO 8.87x10 '3 9.98 2.51x10 -• Fe(8 ) -2.04x10 -3 9.70 1.04x10 '• 
MgO -6.43x10 '3 7.65 2.55x10 -• - - - 
CaO -4.17x10 '3 11.70 1.79x10 '• Ca(s) 1.04x10 -3 11.99 7.09x10 '2 
Na20 2.40x10 '3 2.51 2.61x10 -• Na(8 ) 8.81x10 -4 2.45 1.19x10 -• 
K20 -4.74x10 '4 0.21 1.33x10 '• K($) -8.89x10 '4 0.20 3.11x10 -• 
P205 5.22x10 '4 0.14 2.84x10 '• P(8) 2.11x10 '4 0.13 1.64x10 -• 

Si(8)/Fe(8 ) 5.85x10 '4 5.27 5.12x10 -2 
Ca($}/AI•$} 2.00x10 '4 0.77 1.63x10 -1 

* The correction procedure we used [Niu, 1992] is similar to the one by Klein and Langmuir [1987] with following differences: We 
use a general polynomial equation that allows to correct every oxide and to use all the samples with MgO > 5.0 wt %. This general 
equation accounts for the curvature of variation trends in the region of MgO = 9-7 wt %. We corrected all oxides to MgO = 8.0 wt %. The 
corrected oxide values sum to 100•_1%, and plots of corrected oxide values against MgO show essentially zero slope, suggesting that our 
correlation procedure does not introduce any artifacts. We also apply a regional correction to data from each major geographic area as 
listed in Table 1 (see Niu [1992] for correction coefficients). Values of R > 0.081 are significant at 99% confidence level (F test for N = 
2387: 99% confidence at F = 6.63). Si(8)/Fe(8), Ca(a)/AI(8), and Na(8 ) values are for the trends shown in Figure 3. 

distribution of the global and local trends is systematic with 
spreading rate. 

To do so, we select the 32 best sampled portions of the ridge 
system from the global data set and examine the data from each 
area in detail. These are listed in order of increasing spreading 
rate in Table 3, which also gives the endpoints of each ridge 

segment, its length, spreading rate, number of chemical group 
means and sample density. The lengths of these ridge portions 
vary greatly (Table 3), and all have transforms or nontransform 
discontinuities or large overlapping spreading centers (OSCs) 
[Macdonald et al., 1988] as endpoints. Sampling density also 
varies greatly with the poorest-sampled ridge having ~ 0.7 
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Fig. 2. Examples of the correlation between major element variation and full spreading rate. These correlations are 
consistent with increasing degrees of low pressure fractionation with increasing spreading rate, as shown by the absence of 
trends in plots of fractionation corrected data. See Table 2 for data on other major elements. 

samples - 10 km '1. Ideally, one would choose ridge segments 
of comparable length and sampling density; however, the 
present sample distribution makes this impossible. Another 
consequence of incomplete sampling is that our group of 32 
best sampled areas does not include any portion of the Indian 
Ocean ridge system (Figure 4). Figure 1 shows plots of 
Na(8)and Ca(8)/AI(8) (indices of extent of melting) against 
Si(8)JFe(8 ) (an index of pressure of melting) for our entire data 
set. Figure 5 shows the same two plots for each of the 32 
individual ridge portions of Table 3. 

Most of the 32 ridge segments show clear linear trends with 
slopes indicative of either the global or local trend. However, 
some segments show less clear trends, either intrinsically or 
because of low sampling density. In order to objectively 
assess how closely the data from each area match the global or 
local trend, we developed a method for assigning a numerical 
score to each segment. The scores are derived from (1) the 
slope and significance (F test) of the regression lines (positive 
or negative values of the correlation coefficient R); (2) The 
value and significance (t test) of the correlation coefficients; 
and (3) sampling density. By this method, areas with very 
clear trends (little scatter and many samples) receive the 
highest numerical values (see Table 3, negative score for local 
trend and positive scores for global trend) and areas with 
scattered trends and/or fewer samples receive low numerical 
scores. Details of the scoring procedure are given in the 
appendix. 

Table 3 and Figure 6 summarize the results and show clearly 
that MORB chemical systematics (local versus global trend) are 
related to spreading rate. Fast ridges (> 60 mm/yr) exhibit the 

global trend whereas slow spreading ridges (< 50 mm/yr) 
exhibit the local trend. Furthermore, this relationship is 
apparently independent of geographic length scale as Table 3 
has ridge segments of highly variable length. For example, at 
slow spreading rates, both Narrowgate (34.2 km long) and the 
entire Mid-Atlantic Ridge south of the Kane Fracture Zone (885 
km long) exhibit very clear local trends. At fast spreading 
rates, both small segments and the entire northern and southern 
EPR exhibit the global trend, as shown previously by Niu and 
Batiza [1991a] and Klein and Langmuir [1989]. The 
distribution of these chemical variation trends is thus 

apparently controlled by spreading rate and not spatial scale, 
as implied by the terms global and local. 

Another important result from Table 3 and Figure 5 is that 
the slopes of the regression lines for the global and local 
trends are not constant. Furthermore, as can be seen on Figure 
7, the individual regression lines do not exhibit a systematic 
pattern (such as fanning) on the plots. One possibility is that 
this variability in slope is due to uncertainty in the slope of the 
regression lines (data scatter); however, we find no 
relationship between the correlation coefficients and the slope 
of the regression lines. Thus it is more likely that this slope 
variation is real and reflects characteristics of the natural 

processes that result in the chemical systematics of both fast 
and slow spreading ridges. Interestingly, there appears to be 
more clustering of global trends than of local trends. 

DISCUSSION 

If we assume that the mantle is approximately 
homogeneous, at least for major elements, then the results of 
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Fig. 3. Variations of Si(8)/Fe(8), Na($), and Ca(s)/Al($ ) as a function 
of spreading rate. Note that there appears to be greater dispersion at 
slow spreading rates but that values are essentially constant (and 
scattered) with spreading rate. 

Figure 3 indicate that average mantle temperature is 
independent of spreading rate. However, chemical variation 
trends involving pressure and extents of melting do appear to 
be related to spreading rate (Table 3 and Figures 5 and 6). These 
trends, the global and local chemical variation trends, appear 
to be independent of geographic length scale along axis, and 
the slopes of the trends are variable (Figure 7). These 
observations suggest strongly that the dynamics of mantle 
upwelling, thought to differ fundamentally between fast and 
slow spreading ridges [e.g., Parmentier and Phipps Morgan, 
1990; Lin and Phipps Morgan, 1992; Scott and Stevenson, 
1989], may play a role in controlling the distribution of the 
global and local chemical trends in MORB. We hypothesize 
that the global trend results from melting under conditions 
dominated by passive, plate driven mantle upwelling that is 
broadly two-dimensional in character [e.g., Phipps Morgan, 
1987]. In contrast, the local trend would be the result of 
melting that occurs in rising mantle dominated by buoyant, 
three-dimensional upwelling [e.g., Sotin and Parmentier, 
1989; Scott and Stevenson, 1989]. Such buoyant instabilities 
could be embedded within a mean upward plate-driven flow 
[Scott and Stevenson, 1989]. In fact, since the global trend 

includes regionally averaged data for many slow spreading 
ridges, it seems likely that passive upwelling of mantle is also 
important at slow spreading ridges. 

There exists strong evidence from crustal thickness and 
MORB chemical data [Klein and Langrnuir, 1987], theoretical 
considerations [McKenzie, 1984], and models of MORB 
melting [Klein and Langmuir, 1987; McKenzie and Bickle, 
1988; Niu and Batiza, 1991a] that the global trend of MORB is 
due principally to differences in average mantle temperature. 
Hot mantle rising adiabatically intersects the solidus at a 
deeper level than cooler mantle and continued decompression 
melting with matrix compaction should result in pooled melts 
with chemical signatures of high pressure (high Fe(8) and low 
S i(8)/Fe(8)) and high extents of melting (low Na(8 ) and high 
Ca(s)/AI(8)). Regional differences in manfie temperature should 
give rise to ensembles of data which exhibit the global trend. 
Manfie temperature differences of about 200øC are capable of 
producing the global array [Klein and Langmuir, 1987]. On a 
smaller geographic length scale, differences in mantle 
temperature can give rise to the same global systematics at a 
more local or regional level, as shown by Niu and Batiza 
[1991a]. Thus this explanation of global trend is fully 
consistent with both petrological evidence and models of 
mantle flow beneath fast spreading ridges [e.g., Lin and Phipps 
Morgan, 1992]. 

The global trend is well-explained by adiabatic 
decompression melting of a mantle column in which polybaric 
melts are efficiently separated from their residues and pooled in 
a reservoir at low pressure [Klein and Langmuir, 1987; Niu and 
Batiza, 1991a]. However, in rising diapirs, separation of melt 
from residue may be less efficient. Whereas rapid melt 
segregation in a melting column of global trend preserves 
high-pressure signatures (low Si(8)/Fe(8)) at high extents of 
melting [Klein and Langmuir, 1987], extensive melts of the 
local trend have low-pressure signatures (high Si(8)/Fe(8)). One 
possible explanation is that slow melt segregation in diapirs 
allows matrix-melt reaction during ascent, such that high 
pressure signatures are only preserved in melts produced by low 
extents of melting shortly after initiation of a diapiric 
instability. 

During ascent of a mantle diapir undergoing melting, 
inefficient melt segregation would allow melts to reequilibrate 
with the solid matrix. If these reequilibrated melts were tapped 
by dikes [Nicolas, 1986; Sleep, 1988] at various pressures, an 
ensemble of melts resembling the local trend would result. 
Deep melts would be produced by small extents of melting soon 
after initiation of the diapir. If these melts are tapped by dikes, 
they will have chemical signatures of high pressure and low 
extents of melting. With continued diapiric ascent, melting 
and melt-solid reequilibration, melts would have chemical 
signatures of successively lower pressure and more extensive 
melting. In this scenario, the chemical signature of melts 
depends critically on their ascent and segregation history. 

While this somewhat speculative idea is difficult to prove, 
there are many independent lines of evidence suggesting that 
diapirs are important at slow spreading ridges. Gravity and 
topography data [Lin and Phipps Morgan, 1992; Lin et al., 
1990], studies of mid-ocean ridge segmentation [Parmentier 
and Phipps Morgan, 1990; Whitehead et al., 1984; Schouten et 
al., 1985; Crane, 1985], and theoretical studies of mantle flow 
[Scott and Stevenson, 1989; Sotin and Parmentier, 1989] all 
point to the possible importance of diapirs at slow spreading 
ridges. Furthermore, geologic mapping in ophiolites has 
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Fig. 4. Map of the mid-ocean ridge system. The 32 best sampled areas selected for this study are shown with numbers keyed 
to Table 3. Note the absence of well-sampled area in the Indian Ocean. 

revealed diapiric structure in mantle rocks [Rabinowicz et al., 
1987; Nicolas, 1986]. These independent lines of evidence 
indicate that the notion of diapirs at slow spreading ridges 
deserves serious consideration. Assuming ascent rates of the 
order of plate motion rates and slow melt segregation, chemical 
reaction between melt and solid is difficult to avoid [Kelemen et 
al., 1992; Qin, 1992]. Below, we develop this hypothesis 
further and offer two additional lines of supporting evidence. 
First, we discuss some illustrative mass balance calculations 

indicating that melts of the local trend could be related by a 
melting-crystallization reaction that plausibly could occur in 
rising diapirs undergoing melting and melt reequilibration. 
Second, we show that zero-age lavas of seamounts on the 
flanks of the East Pacific Rise exhibit both the global and local 
chemical variation trends. This is consistent with the diapir 
hypothesis as diapiric buoyancy instabilities may be expected 
to develop at the edges of the broad upwelling region below the 
EPR axis and flanks [Phipps Morgan, 1987; Niu and Batiza, 
1991a]. Similarly, at transitional ridges (50-60 mm/yr) where 
both the global and local trends may occur, diapiric and 
widespread passive upwelling may both occur. In this case the 
petrologic signature of erupted lavas may be dominated by 
either trend. 

Model Calculations 

Relatively little is known about the physico-chemical 
processes occurring in mantle diapirs undergoing melting 
[e.g., Ribe, 1983; Cawthorn, 1975]. Under appropriate 
conditions, material in diapirs should melt just as passively 
upwelling mantle does. However, melt extraction by matrix 
compaction, a process thought to be generally important for 
upwelling mantle [McKenzie, 1984], could be retarded because 
both melt and residue rise together. In this case, the melt and 

matrix would have enhanced opportunity to interact 
chemically, even as melting continued. We envision a process 
similar to that studied by Kelemen [1990] and Kelemen et al. 
[1990] except that the process is polybaric. For this reason, 
the results of Kelernen [1990] and Kelemen et al. [1990] at 0.5 
GPa only cannot be rigorously applied. Instead, we explore 
possible petrologic processes in diapirs with some extremely 
simple but illustrative mass balance calculations. With these 
calculations we attempt to directly constrain the minerals that 
may be involved in producing melts of the local trend of 
chemical variation. 

A fundamental difficulty in attempting to interpret the cause 
of the local trend is that, by definition, this trend is composed 
of samples with identical MgO = 8.0 wt %. Even though the 
local trend probably is the result of dynamic physical and 
chemical processes which lead to variations in MgO (as well as 
other major element abundance), our present definition and 
view of the trend are an artificial, constant-MgO snapshot 
only. Whether melts forming the local trend are related to each 
other directly through some petrologic process such as melting 
or crystallization, or related only indirectly (for example, 
sequential products of a petrologic process), it is most 
improbable that they coexist as constant MgO melts. 

In order to circumvent this problem of constant MgO, while 
at the same time trying to explicitly constrain the major 
silicate phases that might be involved in the local trend, we use 
simple stoichiometric least squares modeling of the type 
described by Bryan et al. [1969] and Bryan [1986]. Figure 8 
shows several well-defined trends from slow spreading ridges 
which we use in our illustrative model. We implicitly assume 
that the magmas of the local trend are related to one another by 
some petrologic processes (melting or crystallization, for 
example) involving major silicate phases, and we attempt to 
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Fig. 6. Bar diagrams to show the relationships between chemical 
systematics and the full spreading rate. Each bar refers to a specific 
ridge segment listed in Table 3 and the first number gives its ID 
number. The value after the comma is the full spreading rate. This 
figure clearly shows that fast spreading ridges exhibit the global trend 
and slow spreading ridges the local trend. There is also a transition 
(50-60 mm/yr) where either trend is possible. 

giving non-unique solutions, our result appear to be very 
robust. We have tested hundreds of models using many 
combinations of mineral end members but only a few yield self- 
consistent results with good fits (low residuals). 
Representative results are shown in Table 5. Note that the 
poorest fits are for Ti and K, which is not surprising since we 
did not include mineral endmembers containing either element 
(though we could add Ti to pyroxene). One interesting result is 
that plagioclase is apparently not needed to describe the a-b 
path for any locality as all solutions with plagioclase give 
very high residuals (> 2.0 or so), with especially poor fits for 
Ca and AI. This is not surprising because melting in 
plagioclase stability field may be quite restricted [Nicolas, 
1986]. Table 5 shows that in general, the path from a to b 
(Figure 9) seems to involve both melting and crystallization. 
Pyroxene components are taken into liquid a while olivine 
solidifies; together, these two effects produce liquid b. In all 
four cases, the original liquid a represents about half of the 
eventual liquid b, and the ratio of pyroxene components (added 
to melt) to olivine component (removed from the melt) is 3.6- 
4.0. Such a trend is thus a net melting trend characterized by a 
mineral-melt reaction of the general form: 

liquid a + pyroxene <=• liquid b + olivine 

and is similar to the reactions studied theoretically and 
experimentally by Kelemen [1990] and Kelemen et al. [1990] 
at 0.5 GPa. Under conditions of ascent to lower pressure, this 
reaction would proceed to the right [e.g., O'Hara, 1965; 
Stolper, 1980; and Elthon and Scarfe, 1984], obviously 
favoring the a to b path over the alternative b to a path. 

This result seems reasonable and is consistent with 

processes expected in a buoyant solid-liquid diapir undergoing 

determine the phases and their proportions using mole percent 
least squares mass balance calculations. 

For simplicity, in Figure 9 we omit data points and show 
only the regression lines for each of the local trends. We 
essentially ask what assemblages of silicate phases could be 
involved in producing the trend from a to b (or b to a)? To get 
around the problem of constant M gO, we use a two step 
approach. First, in the stoichiometric modeling, we combine 
Fe and Mg to form one divalent cation (FM). This allows us to 
obtain a first-order solution while, for the moment, neglecting 
the constant MEO problem. Using FM also allows us to 
temporarily disregard the complexity of Fe/Mg partitioning in 
natural silicate phases and the effects of pressure, temperature 
and composition on the partitioning behavior as we seek only 
a generalized solution. But having done the initial modeling 
with FM, we return to consider how much MgO may actually 
change along the a-b or b-a paths of Figure 9. 

With the cation FM, we make olivine (FM2SiO4) and 
pyroxene (FM2Si206: both orthopyroxene and Mg-Fe 
components of clinopyroxene). In this simple stoichiometric 
modeling, we also consider endmember diopside-hedenbergite, 
jadeire, Ca-tschermaks, and albite-anorthite. Table 4 shows 
the liquid compositions at points a and b of each of the local 
trends of Figures 8 and 9. We then use a least-squares method to 
determine the stoichiometric endmember phases which can, 
when added to liquid a, produce liquid b (or vice versa). 

While least-squares mixing models of this type, especially 
with few components and many phases, are notorious for 
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Fig. 7. All the regression lines of Figure 5 plotted together on Na(s) 
and Ca($)/AI($) versus Si($)/Fe($)diagrams. The heavy line (for 
reference) is the global trend from Figure 4. Note that the slopes of 
both the local and global trends vary and that no simple pattern (such 
as a fanning pattern) exists. 
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Fig. 8. Plots of Na(s ) versus Fe(s ) and Na(S ) versus Si(s ) showing the 
global trend of Klein and Langmuir [1989] (thick line) and several best 
defined local trends (cross trends) recognized at slow spreading mid- 
ocean ridge segments [Klein and Langmuir, 1989; Batiza et al., 1988]. 
CR, Cayman Rise; 26øS, MAR at 26øS; SKFZ, MAR south of the Kane 
Fracture Zone; and RP, Reykjanes Peninsula. 

additional melting. Note that in Table 5 the combined 
compositions of the pyroxenes entering the melts are unlike 
any natural pyroxenes in that Jd, and particularly Ct, are too 
high. This is, in fact, expected, as both orthopyroxene and 
clinopyroxene are residual phases during mantle melting to 
produce MORB [Dick et al., 1984]. Continuous melting will 
tend to deplete Jd and Ct components in residual pyroxenes 
because both are incompatible during melting and less stable in 
pyroxenes as pressure is reduced. Thus pyroxenes in the solid 
will gradually be depleted in these components, while the melt 
in a rising diapir will be enriched in Jd and Ct components. 

We now reconsider possible changes in MgO and FeO. To 
calculate the MgO and FeO changes, we dispense with the use of 
FM. Using the phase proportions from Table 5, we partition 
FeO and MgO among the solid silicate phases (see Table 4 note 
for details) and calculate liquid b as a combination of liquid a 
and the phases of Table 5. The FeO and MgO values obtained 
are given in Table 4. MgO changes only slightly along our 
calculated path a - b. It is important to note that because of the 
MgO = 8.0 condition of the local trend lines in Figures 8 and 9 
and because the calculations indicate a small change of MgO, 
the calculated a - b paths cannot be identical to the a - b paths 
of the local trends. To assess the difference in the calculated 

versus observed paths, we plot the calculated endpoints (b) on 
Figure 9. In addition, we plot local trends corrected to MgO = 
7.0 and MgO = 9.0, which fall close to the MgO = 8.0 
positions. Thus, while the calculated a- b paths are not 
identical to the slow spreading data arrays in Figure 9, they are 
very close. Indeed, since the slopes of actual local trends vary 
(Figure 7), there is evidently some variability in the processes 
leading to this trend. Given the potential complexity of 

physical-chemical processes in rising diapirs undergoing 
melting, this variability in the data is not surprising. 

Kinzler and Grove [1992] recently proposed polybaric 
fractional crystallization as a possible origin for the local 
trend. We feel that fractional crystallization is inevitable 
within rising mantle diapirs, but such fractionation should 
occur only during the latest stages of diapirism when melting 
ceases due to slow ascent and higher heat loss. Mineralogic 
features of MORB lavas from slow spreading ridges suggest 
that polybaric fractionation may play a role in their 
petrogenesis [Bryan et al., 1981; fluster et al., 1989]. 
However, we suggest that polybaric fractionation should not be 
the major cause of the local trend; a rigorous model should 
explain the chemical relationships among parameters of Fe, Si, 
Ca, AI, and Na as shown above, not just Fe and Si versus Na. A 
rigorous test among existing models requires much additional 
study of possible processes in diapirs, plus careful petrologic 
modeling of both melting residue (peridotite) and individual 
lava suites that exhibit the local trend. 

Evidence From Near-EPR Seamounts 

The near-axis flanks of the EPR have abundant seamounts 

composed dominantly of MORB [Batiza eta/., 1990]. They 
occur as individual seamounts and also as chains parallel to 
either relative or absolute plate motion. Figure 10 shows that 
the seamount array is very similar to the global array (defined 
using axial samples only) (Figure 1) and appears to be a 
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Fig. 9. Same as Figure 8 but with the data points of the local trends 
omitted. Regression lines are best fit lines for all elements (not just 
ones shown). The points labeled a (solid square) and b (empty square) 
are the liquids we consider in Tables 4 and 5 which define the a-b path 
we attempt to model. The thin lines between solid squares are the 
results of our two-step modeling procedure (see Tables 4 and 5 and text 
for details). Note that the thin lines (model) and the thick lines (data) 
are generally well matched. The model we present gives a good fit to 
all elements, not just Na, Fe, and Si. Also shown as thin light lines for 
comparison are the local trend data corrected to MgO = 7.0 and 9.0 wt % 
as labeled (RP only, others are similar). Note that these data have 
similar slopes to the MgO = 8.0 wt % local trend. 
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TABLE 4. Melt Compositions for Each Local Trend (Figures 8 and 9) 

RP-a RP-b CR-a CR-b SK-a SK-b 26øS-a 26øS-b 

Weight Percent at MgO = 896 

Si(8) 48.00 49.38 50.75 51.75 49.80 50.69 50.69 51.62 
Ti(8 ) 2.48 1.06 1.67 1.46 1.85 1.28 1.68 1.13 
AI(8 ) 13.56 15.60 16.14 16.79 15.30 16.25 15.48 15.70 
Fe(8 ) 14.37 10.13 8.91 7.68 10.73 8.78 9.65 8.31 
Ca(8 ) 10.12 13.15 10.11 10.85 10.55 11.88 11.48 12.41 
Na(8) 2.41 1.89 3.45 3.20 2.89 2.61 2.70 2.52 
K(8 ) 0.25 0.10 0.23 0.28 0.23 0.20 0.09 0.06 
P(8) 0.24 0.07 0.18 0.18 0.19 0.13 0.16 0.11 

MgO* 9.55 8.74 8.76 9.58 
FeO* 8.01 6.71 7.38 6.59 

Recalculated to Cation Mole Percent 

Si 45.35 46.19 46.82 47.32 46.33 46.82 46.93 47.69 
Ti 1.77 0.75 1.16 1.00 1.30 0.89 1.17 0.78 
A1 15.10 17.19 17.55 18.10 16.77 17.70 16.90 17.09 

FMt 22.63 19.08 17.88 16.78 19.44 17.80 18.52 17.44 
Ca 10.25 13.18 10.00 10.63 10.52 11.76 11.39 12.29 
Na 4.42 3.44 6.19 5.70 5.22 4.69 4.87 4.54 

K 0.30 0.12 0.27 0.33 0.27 0.23 0.11 0.07 
P 0.19 0.06 0.14 0.14 0.15 0.11 0.12 0.09 

RP, Reykjanes Peninsula; CR, Cayman Rise; SK, south of The Kane Fracture Zone; and 26øS, 26øS area MAR. 
*MgO and FeO compositions for b were calculated explicitly to determine their change along the a-b path. In this calculation, other 

elements agree with those in Table 5. We used the calculated phase proportions from Table 5 and peridotitc modal abundances from Dick 
[1989]. We partition En-Fs between Opx and Cpx in Table 5 in the ratio 63:37, with Opx free of Di and Hd components. We also used 
Fo90.3, Opx with Mg # = 91.3 and Cpx with Mg # = 94.6 from Dick [1989]. As explained in the text, we consider these mass balance models 
illustrative, not definitive. 

t FM is the combined cation mole percent of FeO and MgO (= 8.0 wt %). 

TABLE 5. Results of the Least Squares Model Calculations 

RP-b CR-b SK-b 26øS-b 

a 0.4884 0.6816 0.6667 0.5414 
Di-Hd 0.1569 0.0599 0.0841 0.1249 
Jd 0.0518 0.0597 0.0488 0.0767 
Ct 0.1704 0.0929 0.1060 0.1204 
En-Fs 0.2913 0.2220 0.2104 0.2816 
Ol -0.1569 -0.1200 -0.1167 -0.1467 

SQ'D 0.0142 0.0654 0.0032 0.0220 

RP-b CR-b SK-b 26øS-b 

Calc Obser Diff Calc Obser Diff Calc Obser Diff Calc Obser 
Si 46.18 46.19 -0.01 47.32 47.32 0.00 46.82 46.82 0.00 47.68 47.69 
Ti 0.86 0.75 0.11 0.79 1.00 -0.21 0.87 0.89 -0.02 0.63 0.78 
A1 17.19 17.19 0.00 18.10 18.10 0.00 17.70 17.70 0.00 17.09 17.09 
FM 19.08 19.08 0.00 16.78 16.78 0.00 17.80 17.80 0.00 17.44 17.44 
Ca 13.19 13.18 0.01 10.64 10.63 0.01 11.77 11.76 0.01 12.30 12.29 
Na 3.45 3.44 0.01 5.71 5.70 0.01 4.70 4.69 0.01 4.55 4.54 
K 0.15 0.12 0.03 0.18 0.33 -0.15 0.18 0.23 -0.05 0.06 0.07 

Diff 

-0.01 

-0.15 
0.00 
0.00 
0.01 
0.01 

-0.01 

Di-Hd, diopside-hedenbergite; Jd, jadeitc; Ct, Ca-tschermaks; En-Fs, enstatite-ferrosilite; O1, olivine; SQ'D, sum of residuals squared 
(,Y. X2). Calc, calculated; Obser, observed; and Diff, difference. All the elements are cation mole percent. 

combination of both the global and local trends. Very clear 
local trends are found at individual seamounts, as shown in 

Figure 11. Thus the local trend is not confined to slow 
spreading ridges but also is found from zero-age lavas of 
seamounts near fast spreading ridges. 

As shown by Niu and Batiza [1991a], mantle upwelling 

beneath the EPR appears to become less vigorous off axis such 
that at 40-50 km away from the EPR axis the upwelling is 
feeble. In such an off-axis mantle setting, diapiric instabilities 
would have adequate time to nucleate and rise, providing MORB 
melts for some off-axis active volcanoes. While this 

suggestion is speculative, the existence of diapiric 
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Fig. 10. Data for seamounts near East Pacific Rise (8" to 15"N) from 
Batiza and Vanko [1984], Allan et al. [1989], Batiza et al. [1989, 
1990], and unpublished data. REL points are from members of small 
seamount chains parallel to relative motion; ABS for chains parallel to 
the absolute plate motion. For reference, we show the global trend 
[Klein amt Langmuir, 1989], a representative local trend and data for 
the northem EPR from Niu amt Batiza [1991a]. Note that the seamount 
data array strongly resembles the õ1obal axial MORB array (Figure l). 

instabilities below the flanks of the EPR is very plausible. If 
so, then the existence of the local trend at near-EPR seamounts 

is consistent with the other lines of evidence indicating that 
the local trend could originate by solid-melt reaction in rising 
diapirs undergoing melting. 

Diapirs at Slow Spreading Ridges 
Slow spreading ridge segments in the Atlantic [e.g., Kuo 

and Forsyth, 1991; Linet al., 1990] are typically characterized 
by central along-axis highs and negative residual gravity 
anomalies. These anomalies may be due to thick crust, a 
thicker mantle column of low-density residual mantle, and/or 
higher-temperature mantle. All these possibilities are 
consistent with focused buoyant mantle upwelling with more 
melting in the center of the segment. Whether this represents a 
single large diapir or numerous individual diapirs in the center 
of the segment is not known. Nevertheless, given the 
numerous independent lines of evidence favoring diapirs at 
slow spreading ridges, plus the two additional petrological 
lines of evidence presented above, we suggest a diapir model 
for the origin of the local trend of chemical variation. 

CONCLUSIONS 

1. With an expanded global data set, we confirm that slow 
spreading ridges generally appear to have more primitive lavas 
than fast spreading ridges. 

2. We confirm that there appear to be no systematic 
differences between slow and fast spreading ridges in the depth 
or extent of partial melting; thus mantle temperature seems to 
be independent of spreading rate. 

3. The so-called local and global trends of MORB 
systematics are a function of spreading rate. The global 
systematics are found at fast spreading ridge segments and the 
local systematics are found at slow spreading ridges. Either 
trend can be found in transitional ridges spreading at 50-60 
mm/yr. 

4. The so-called local and global trends are not apparently 
sensitive to geographic length scale. 

5. The global and local trends display a range of slopes on 
chemical diagrams, but no consistent or regular behavior, such 
as a fanning pattern. 

6. The local trend is not confined to slow spreading ridges 
but also occurs at near-EPR seamounts. 

7. Strong geophysical and field evidence (in ophiolites) 
points to the importance of diapirs at slow spreading ridges. 
We show that the local trend is characteristic of slow spreading 
ridges and propose that this trend could result from processes in 
rising diapirs undergoing melting and melt reequilibration. 

8. Transitional ridges spreading at 50-60 mm/yr may 
display either the global or local trend of chemical variation. 
We interpret this to indicate that both two-dimensional, 
passive upwelling and buoyant, three-dimensional (diapiric) 
mantle upwelling occur and that the petrologic signatures of 
lavas erupted may be dominated by either process. 

APPENDIX 

Numerical values (scores) are derived to objectively assess 
how well the observed trends match idealized local and/or 

global trend. 
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Fig. 11. Seamount data from Batiza and Vanko [1984] and Batiza et al. 
[1990] showing local trends for individual seamounts. 
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RCa/A 1 and RNa are the correlation coefficients of Ca(s)/AI(8 ) 
versus Si(s)]Fe(s ) and Na(8 ) versus Si(s)/Fe(s ), respectively; R 95• 
is the critical value of the correlation coefficient at 95% 

confidence level (t test); In our test, if the R is significant at 
95% confidence level, the slopes of the regression lines are 
also significant at that level (F test). 

Local trend 

Good (- 1.0): 
Med (-0.8): 
Poor (-0.6): 

RCa/A1 > 0, RNa < 0, Rca/^l and IRNa I > R 95• 
RCa/A• > 0, RNa < 0, RCa/A• or IRN, I > R 95•1' 
RcatA1 > 0, RNa < 0, RcatA1 and IRNa I_< R 95• 

Global trend 

Good (1.0): 

Med (0.8): 
Poor (0.6): 

RCaiA 1 < 0, RNa > 0, IRc,/d I and RNa > R 95% 
RCa/A1 < 0, RNa > 0, [Rca/A • I RNa > R 95% 
RCa/A1 < 0, RNa > 0, ]Rca/A 1 ]and RNa < R 95%, 

Transitional 

Local med (-0.4): RCa/A1 > 0, RNa > 0, Larger R > R 95•' 
or RCa/A1 < 0, RN. < 0, ILarget R I> R 95• 

Local poor (-0.2): RCa/A1 > 0, RNa > 0, Larger R < R 95•' 
or RCa/A1 < 0, RN, < 0, ILarget R I< R 95• 

Global med (0.4): RCa/A 1 < 0, RNa < 0, ILarget R I> R 95•' 
or RCa/A 1 > 0, RNa > 0, Larger R > R 95• 

Global poor (0.2): RCa/A1 < 0, RNa < 0, ILarget R I< R 95•' 
or RCa/A 1 >_ 0, RNa > 0, Larger R < R 95% 

Calculated score for plotting is to reflect the important 
effects of the R values and the sampling density along a ridge 
segment, we calculated the plotted scores by 

Score = AGF * R * SD 1/4 

where AGF is the arbitrary "goodness of fit" (values in 
parentheses after Good, Med, and Poor); R is the larger 
correlation coefficient; and S D is the sample density (number 
of chemical group means per 10 km). We arbitrarily use the 
radical of 4 to damp out the large range of values for sampling 
density while arbitrarily keeping our score numerically small. 
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